Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$f(-1)=a-b+c$
$f(2)=4a+2b+c$
Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$
$\Rightarrow f(-1)=-f(2)$
$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)
\(f\left(-1\right)=a+c-b\)
\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)
\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)
\(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)
\(f\left(-5\right)=a.\left(-5\right)^2+b.\left(-5\right)+c=25a-5b+c\)
\(f\left(2\right)+f\left(5\right)=4a+2b+c+25a-5b+c=29a-3b+2c\)
\(=\left(29a+2c\right)-3b=3b-3b=0\)
\(\Leftrightarrow f\left(2\right)=-f\left(-5\right)\)
\(\Leftrightarrow f\left(2\right)f\left(-5\right)\le0\).
Ta có \(f\left(-2\right)\times f\left(-3\right)=\left(4a-2b+c\right).\left(9a+3b+c\right)=\left(4a-2b+c\right).\left[13a+b+2c-\left(4a-2b+c\right)\right]\)
Mà \(13a+b+2c=0\) theo giả thiết.
\(\Rightarrow f\left(-2\right)\times f\left(3\right)=-\left[\left(4a-2b+c\right)^2\right]\)
\(\left(4a-2b+c\right)^2\) luôn \(\ge0\Rightarrow f\left(-2\right)\times f\left(3\right)\) \(\le0\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Lời giải:
Ta có:
$f(4)=16a+4b+c$
$f(-2)=4a-2b+c$
Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$
$\Rightarrow f(-2)=-f(4)$
$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$
Ta có đpcm.