Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
a) \(\hept{\begin{cases}f\left(2\right)=156\\f\left(-3\right)=156\\f\left(-1\right)=132\end{cases}\Rightarrow\hept{\begin{cases}4a+2b+c=156\\9a-3b+c=156\\a-b+c=132\end{cases}\Rightarrow}\hept{\begin{cases}4a+2b+132-a+b=156\\9a-3b+132-a+b=156\\c=132-a+b\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}3a+3b=24\\8a-2b=24\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a+b=8\\-4a+b=-12\\c=132-a+b\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}5a=20\\b=8-a\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=4\\c=132\end{cases}}}\)
b) \(f\left(x\right)=4x^2+4x+132=4x^2+2x+2x+1+131=2x\left(2x+1\right)+\left(2x+1\right)+131\)
\(=\left(2x+1\right)^2+131\)
\(\left(2x+1\right)^2\ge0\forall x\Rightarrow f\left(x\right)\ge131\forall x\). Vậy \(f\left(x\right)\ne0\forall x\)