Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$
$\Leftrightarrow 4ac\geq b^2$
Áp dụng BĐT AM-GM:
$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$
Vậy $Q_{\min}=4$
Tham khảo:
a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)
Lại có:
\(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)
\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))
Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)
b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)
Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)
Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)
Hay \(S\left( {0;1} \right).\)
Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
\(f\left(x\right)\ge0\) ;\(\forall x\in R\)
\(\Leftrightarrow\Delta'=4b^2-ac\le0\)
\(\Leftrightarrow ac\ge4b^2\Rightarrow\sqrt{ac}\ge2b\)
\(F=\dfrac{a+c}{b}\ge\dfrac{2\sqrt{ac}}{b}\ge\dfrac{2.2b}{b}=4\)
\(F_{min}=4\) khi \(a=c=2b\)
Giả sử \(x\le0;a,b\ge0\)
Ta có \(c=-a-b\) và hàm \(f\left(x\right)\) lẻ nên
\(f\left(a\right).f\left(b\right)+f\left(b\right).f\left(c\right)+f\left(c\right).f\left(a\right)\le0\)
\(\Leftrightarrow f\left(a\right).f\left(b\right)\le-f\left(b\right).f\left(c\right)-f\left(c\right).f\left(a\right)=-f\left(c\right)\left[f\left(a\right)+f\left(b\right)\right]\)
\(\Leftrightarrow f\left(a\right).f\left(b\right)\le f\left(-c\right)\left[f\left(a\right)+f\left(b\right)\right]\)
\(\Leftrightarrow f\left(a\right).f\left(b\right)\le f\left(a+b\right).f\left(a\right)+f\left(a+b\right).f\left(b\right)\left(1\right)\)
Do \(f\left(x\right)\) đồng biến trên \(R\) nên
\(\left\{{}\begin{matrix}a+b\ge a\\a+b\ge b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}f\left(a+b\right)\ge f\left(a\right)\\f\left(a+b\right)\ge f\left(b\right)\end{matrix}\right.\)
\(f\left(a+b\right).f\left(a\right)+f\left(a+b\right).f\left(b\right)\ge\left[f\left(a\right)\right]^2+\left[f\left(b\right)\right]^2\ge2f\left(a\right)f\left(b\right)\ge f\left(a\right)f\left(b\right)\)
\(\Rightarrow\left(1\right)\text{ đúng }\left(\text{đpcm}\right)\)