\(f\left(x\right)=ax^2+bx+c\ge0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 2 2020

\(\Delta=b^2-4ac\le0\Rightarrow b^2\le4ac\Rightarrow\frac{a}{b}.\frac{c}{b}\ge\frac{1}{4}\)

Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\Rightarrow xy\ge\frac{1}{4}\)

\(F=4x+y\ge4\sqrt{xy}\ge4\sqrt{\frac{1}{4}}=2\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\) hay \(b=c=4a\)

9 tháng 11 2018

Dùng delta đi

9 tháng 11 2018

giải giúp mk đi Mashiro Shiina

14 tháng 4 2017

Lời giải

a) c/m \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}>0\forall x\)

\(\Delta_{x_{a,b,c}}=a^2+12bc-\dfrac{4}{3}a^2=\dfrac{-a^2+36bc}{3}\)

\(\Delta=\dfrac{-a^3+36}{3a}\)

\(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\-a^3+36< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{-36a^3+36}{3a}< 0\)

\(\Rightarrow\) F(x) vô nghiệm => f(x)>0 với x => dpcm

b)

\(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)\(\Leftrightarrow\dfrac{a^2}{3}+b^2+c^2-ab-bc-ac>0\)

\(\Leftrightarrow\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\)

Từ (a) =>\(f\left(b+c\right)=\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\) => dccm

30 tháng 11 2017

sky oi say oh yeah

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
2 tháng 5 2019

Please !!!!!