K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2021

Lời giải:

a. Sau 2 năm thu được:

$100(1+\frac{0,5}{100})^{24}=112,72$ (triệu đồng)

b.

Giả sử sau $n$ tháng thì rút ra được gốc lẫn lãi là 300 triệu

$100(1+0,005)^n=300$

$1,005^n=3$

$n=\log_{1,005}3=220,3$ (tháng)

Vậy sau ít nhất 221 tháng thì người đó rút được 300 triệu. Đổi 221 tháng thành 18 năm 5 tháng 

Đáp án C.

27 tháng 11 2021

Em cảm ơn cô ạ

NV
9 tháng 9 2021

Bạn cần câu nào nhỉ?

9 tháng 9 2021

em cần câu F G H ạ. Em cảm ơn

NV
11 tháng 8 2021

\(y'=-3mx^2+2x-3\)

Hàm nghịch biến trên khoảng đã cho khi với mọi \(x\in\left(-3;0\right)\) ta có:

\(-3mx^2+2x-3\le0\)

\(\Leftrightarrow2x-3\le3mx^2\)

\(\Leftrightarrow\dfrac{2x-3}{3x^2}\le m\)

\(\Rightarrow m\ge\max\limits_{\left(-3;0\right)}\left(\dfrac{2x-3}{3x^2}\right)\)

Xét hàm \(f\left(x\right)=\dfrac{2x-3}{3x^2}\Rightarrow f'\left(x\right)=\dfrac{2\left(3-x\right)}{3x^3}< 0;\forall x\in\left(-3;0\right)\)

\(\Rightarrow f\left(x\right)>f\left(-3\right)=-\dfrac{1}{3}\)

\(\Rightarrow m\ge-\dfrac{1}{3}\)

CHọn B

NV
17 tháng 8 2021

Đặt \(x=\sqrt[3]{\sqrt[]{50}+7}-\sqrt[3]{\sqrt[]{50}-7}\)

\(x^3=14-3\sqrt[3]{\left(\sqrt[]{50}+7\right)\left(\sqrt[]{50}-7\right)}\left(\sqrt[3]{\sqrt[]{50}+7}-\sqrt[3]{\sqrt[]{50}-7}\right)\)

\(x^3=14-3x\)

\(x^3+3x-14=0\)

\(\left(x-2\right)\left(x^2+2x+7\right)=0\)

\(x=2\)

\(\Rightarrow\dfrac{m}{n}=2\)

\(\Rightarrow\) Hiển nhiên tồn tại vô số m, n nguyên thỏa mãn đẳng thức trên

NV
10 tháng 3 2022

Từ đồ thị \(f'\left(x\right)\) ta có BBT hàm \(f\left(x\right)\) như sau:

undefined

Từ đó ta thấy hàm \(f\left(x\right)\) đồng biến trên các khoảng \(\left(-2;1\right)\) và \(\left(2;+\infty\right)\)

Cũng từ BBT, trên \(\left[-2;2\right]\) ta thấy \(\max\limits_{\left[-2;2\right]}f\left(x\right)=f\left(1\right)\)

Diện tích giới hạn bởi phần đồ thị \(f'\left(x\right)\) và trục hoành trên \(\left[-2;1\right]\) lớn hơn đoạn \(\left[1;2\right]\)

\(\Rightarrow\int\limits^1_{-2}\left|f'\left(x\right)\right|dx>\int\limits^2_1\left|f'\left(x\right)\right|dx\Rightarrow\int\limits^1_{-2}f'\left(x\right)dx>\int\limits^1_2f'\left(x\right)dx\)

\(\Rightarrow f\left(1\right)-f\left(-2\right)>f\left(1\right)-f\left(2\right)\)

\(\Rightarrow f\left(2\right)>f\left(-2\right)\)

\(\Rightarrow\min\limits_{\left[-2;2\right]}f\left(x\right)=f\left(-2\right)\)

\(\Rightarrow a+b=1+\left(-2\right)=-1\)

NV
10 tháng 8 2021

Từ đồ thị ta thấy \(f'\left(x\right)>0\) trên các khoảng \(\left(-1;1\right)\) và \(\left(3;+\infty\right)\)

\(f'\left(x\right)< 0\) trên \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)

\(\Rightarrow\) Hàm nghịch biến trên (1;3)

Chọn B

NV
20 tháng 1 2022

Chỉ thấy bài 5 với 6:

5.

\(f'\left(x\right)+2f\left(x\right)=0\Leftrightarrow f'\left(x\right)=-2f\left(x\right)\Leftrightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}=-2\)

Lấy nguyên hàm 2 vế:

\(\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx=\int-2dx\Rightarrow ln\left(f\left(x\right)\right)=-2x+C\)

Thay \(x=1\Rightarrow0=-2+C\Rightarrow C=2\)

\(\Rightarrow ln\left(f\left(x\right)\right)=-2x+2\Rightarrow f\left(x\right)=e^{-2x+2}\)

\(\Rightarrow f\left(-1\right)=e^4\)

NV
20 tháng 1 2022

6.

\(f\left(x\right)+x.f'\left(x\right)=2x+1\)

\(\Leftrightarrow x'.f\left(x\right)+x.f'\left(x\right)=2x+1\)

\(\Leftrightarrow\left[x.f\left(x\right)\right]'=2x+1\)

Lấy nguyên hàm 2 vế:

\(\int\left[x.f\left(x\right)\right]'dx=\int\left(2x+1\right)dx\)

\(\Rightarrow x.f\left(x\right)=x^2+x+C\)

Thay \(x=1\Rightarrow1.f\left(1\right)=1+1+C\Rightarrow C=1\)

\(\Rightarrow f\left(x\right)=\dfrac{x^2+x+1}{x}\)

\(\Rightarrow f\left(2\right)=\dfrac{7}{2}\)

9 tháng 2 2022

Hôm bữa bên CLB của ĐH Bách Khoa Hồ Chí Minh có tổ chức ấy bạn, cơ mà chắc hết rùi :D Btw, có thầy gì admin page Luyện thi đánh giá năng lực hồi năm ngoái mình có follow thấy thầy cũng tổ chức thường xuyên lắm nè :v 

16 tháng 1 2022

a) \(I_1=\int\dfrac{dx}{x^2+2x+3}\)

\(=\int\dfrac{dx}{\left(x+1\right)^2+2}=\int\dfrac{d\left(x+1\right)}{\left(x+1\right)^2+\left(\sqrt{2}\right)^2}\)

\(=\dfrac{1}{\sqrt{2}}arctan\left(\dfrac{x+1}{\sqrt{2}}\right)+C\)

b) \(I_2=\int\dfrac{dx}{4x^2+4x+2}\)

\(=\int\dfrac{dx}{\left(2x+1\right)^2+1}=\dfrac{1}{2}\int\dfrac{d\left(2x+1\right)}{\left(2x+1\right)^2+1^2}\)

\(=\dfrac{1}{2}arctan\left(2x+1\right)+C\)