Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{4}{1\times3}+\frac{16}{3\times5}+\frac{36}{5\times7}+...+\frac{2500}{49\times51}\)
\(=\frac{1\times3+1}{1\times3}+\frac{3\times5+1}{3\times5}+\frac{5\times7+1}{5\times7}+...+\frac{49\times51+1}{49\times51}\)
\(=\frac{1\times3}{1\times3}+\frac{1}{1\times3}+\frac{3\times5}{3\times5}+\frac{1}{3\times5}+\frac{5\times7}{5\times7}+\frac{1}{5\times7}+...+\frac{49\times51}{49\times51}+\frac{1}{49\times51}\)
\(=1+\frac{1}{1\times3}+1+\frac{1}{3\times5}+1+\frac{1}{5\times7}+...+\frac{1}{49\times51}\) ( Có : \(\left(51-3\right)\div2+1=25\)chữ số 1 )
\(=25+\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{49\times51}\)
\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}\right)+\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\times\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\times\left(\frac{1}{49}-\frac{1}{51}\right)\)
\(=25+\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=25+\frac{1}{2}\times\left(1-\frac{1}{51}\right)\)
\(=25+\frac{1}{2}\times\frac{50}{51}\)
\(=25+\frac{25}{51}\)
\(=\frac{1300}{51}\)
\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{2500}{49.51}\)
\(=\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+...+\frac{2500}{2499}\)
\(=1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+...+1+\frac{1}{2499}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2500}\right)\)
\(=25+\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\right)\)
Đặt \(A=\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{2499}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}=\frac{50}{51}\)
\(\Rightarrow S=25+\frac{50}{51}=\frac{1325}{51}\)
Vậy S=\(\frac{1325}{51}\)
Đặt \(S=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+...+\frac{3}{49\cdot51}\)
\(S=\frac{3}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(S=\frac{3}{2}\cdot\left(1-\frac{1}{51}\right)\)
\(\Rightarrow S=\frac{3}{2}\cdot\frac{50}{51}=\frac{3\cdot50}{2\cdot51}=\frac{150}{102}=\frac{25}{17}\)
Ta có:
\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+........+\frac{2500}{49.51}\)
A=1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8+1/8*9
A=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/2-1/9
Câu B tương tự nha bạn :333
Bài đầu và bài cuối mk bt nhưng 2 bài còn lại mk ko hiểu cho lắm
Cho mk đầu bài 1 , 4 nhé
Học tốt
Nhớ t.i.c.k
#Vii
B=1x3+3x5+5x7+7x9+...+95x97+97x99
= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)
= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2
= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)
= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)
Đặt : A = 12+32 +52+...+952+ 972
C =1+3 +5+...+95+97
tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B
Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)
\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)
\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)
\(=97\times99\times101+3\)
\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)
Bài 2 :
Bài làm
Số học sinh giỏi tăng thêm ở cuối học kì 2 bằng : \(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(=\)\(\frac{1}{12}\)học kì 1 hay 2 học sinh
Vậy số học sinh lớp 6A là : 2 \(\div\)\(\frac{1}{12}\)\(=\)24 (học sinh)
Đáp số : 24 học sinh
không
anh ko trả lời em đâu , mơ đi