Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)
=> a^2 + b^2 =4 > c^2 = 2
Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:
<=> 1/2cos7x - √3/2 sin7x = -√2/2
<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)
<=> sin(π/6 - 7x) = sin(-π/4)
<=> π/6 - 7x = -π/4 + k2π
hoặc (k∈Z)
π/6 - 7x = π + π/4 + k2π
<=> x = 5π/84 + k2π/7
hoặc (k∈Z)
x = -13π/84 + k2π/7
1) b) Ta có:
* 2π/5 < x < 6π/7
<=> 2π/5 < 5π/84 + k2π/7 < 6π/7
<=> 143π/420 < k2π/7 < 67π/84
<=> 143/120 < k < 67/24
=> k ϵ {2}
=> x = 53π/84
* 2π/5 < x < 6π/7
<=> 2π/5 < -13π/84 + k2π/7 < 6π/7
<=> 233/120 < k < 85/24
=> k ϵ {2; 3}
=> x = 5π/12 ; x = 59π/84
Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.
a: Δ: 2x-y-1=0; A(-1;2)
B là ảnh của A qua phép đối xứng trục Δ
=>Δ là đường trung trực của AB
=>Δ vuông góc AB tại trung điểm H của AB
Đặt (d): ax+by+c=0 là phương trình đường thẳng AB
Δ: 2x-y-1=0
=>(d): x+y+c=0
Thay x=-1 và y=2 vào (d), ta được:
c-1+2=0
=>c+1=0
=>c=-1
=>(d): x+y-1=0
Tọa độ H là:
\(\left\{{}\begin{matrix}2x-y-1=0\\x+y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=1\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=2\\x+y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=1-\dfrac{2}{3}=\dfrac{1}{3}\end{matrix}\right.\)
H là trung điểm của AB
=>\(\left\{{}\begin{matrix}x_B+x_A=2\cdot x_H\\y_B+y_A=2\cdot y_H\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_B-1=2\cdot\dfrac{2}{3}=\dfrac{4}{3}\\y_B+2=2\cdot\dfrac{1}{3}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=\dfrac{4}{3}+1=\dfrac{7}{3}\\y_B=\dfrac{2}{3}-2=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: B(7/3;-4/3)
b: (C): \(\left(x-1\right)^2+\left(y-2\right)^2=9\); Δ: 2x-y-1=0
=>R=3 và tâm I(1;2)
Gọi D là điểm đối xứng của I qua phép đối xứng trục Δ, gọi E là giao điểm của DI với trục Δ, (d1): ax+by+c=0 là phương trình đường thẳng DI
D đối xứng I qua phép đối xứng trục Δ
=>Δ là đường trung trực của DI
=>Δ vuông góc (d1) tại trung điểm E của DI
Δ: 2x-y-1=0
=>(d1): x+y+c=0
Thay x=1 và y=2 vào (d1), ta được:
c+1+2=0
=>c+3=0
=>c=-3
=>(d1): x+y-3=0
Tọa độ E là:
\(\left\{{}\begin{matrix}2x-y-1=0\\x+y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=1\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\x+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=3-\dfrac{4}{3}=\dfrac{5}{3}\end{matrix}\right.\)
E(4/3;5/3); I(1;2)
E là trung điểm của DI
=>\(\left\{{}\begin{matrix}x_D+x_I=2\cdot x_E\\y_D+y_I=2\cdot y_E\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_D+1=2\cdot\dfrac{4}{3}=\dfrac{8}{3}\\y_D+2=2\cdot\dfrac{5}{3}=\dfrac{10}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=\dfrac{5}{3}\\y_D=\dfrac{4}{3}\end{matrix}\right.\)
Phương trình đường tròn (T) là:
\(\left(x-\dfrac{5}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=9\)
Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?
\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)
\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)
\(\Leftrightarrow cos^22x+3cos2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow...\)
Để pt có nghiệm \(\Rightarrow cosx\ge0\)
Khi đó \(\Rightarrow\left(1+sinx\right)^4=cos^2x\)
\(\Rightarrow\left(1+sinx\right)^4=1-sin^2x\)
\(\Rightarrow\left(1+sinx\right)^4=\left(1+sinx\right)\left(1-sinx\right)\)
\(\Rightarrow\left[{}\begin{matrix}sinx+1=0\\\left(1+sinx\right)^3=1-sinx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx\left(sin^2x+3sinx+4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\cosx=-1\left(loại\right)\\cosx=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{2}+k2\pi\\x=k2\pi\end{matrix}\right.\)
1/
Bạn chỉ cần tìm sin, cos trong \(\left[0;2\pi\right]\) là đủ (vì cả 2 hàm đều tuần hoàn với chu kì \(2\pi\))
Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\) với \(a\in\left[0;2\pi\right]\)
\(\Rightarrow4sina.cosa\left(2cos^2a-1\right)=1\)
\(\Leftrightarrow2sin2a.cos2a=1\Leftrightarrow sin4a=1\)
\(\Rightarrow4a=\frac{\pi}{2}+k2\pi\Rightarrow a=\frac{\pi}{8}+\frac{k\pi}{2}\)
\(\Rightarrow0\le\frac{\pi}{8}+\frac{k\pi}{2}\le2\pi\Rightarrow a=\left\{\frac{\pi}{8};\frac{5\pi}{8};\frac{9\pi}{8};\frac{13\pi}{8};\frac{17\pi}{8}\right\}\)
\(\Rightarrow\left(x;y\right)=\left(sin\frac{\pi}{8};cos\frac{\pi}{8}\right);\left(sin\frac{5\pi}{8};cos\frac{5\pi}{8}\right)...\)
2.
\(sinx=\frac{1}{3}\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+l2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)\\x=\pi-arcsin\left(\frac{1}{3}\right)\end{matrix}\right.\)
(Vì \(0< \frac{1}{3}< 1\) nên \(0< arcsin\left(\frac{1}{3}\right)< \frac{\pi}{2}\) do đó nếu \(k>0\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi>2\pi\) ; nếu \(k\le-1\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi\le-\frac{3\pi}{2}\) đều ko thuộc \(\left[0;\pi\right]\Rightarrow k=0\).
Tương tự với \(l\))
Cho mình hỏi sao từ 0 < 1/3 < 1 thì suy ra đc 0 < arcsin (1/3) < pi/2 vậy?
\(\Leftrightarrow cos2x-cos4x+\left(3\sqrt{2}-1\right)cos2x-3=0\)
\(\Leftrightarrow-cos4x+3\sqrt{2}cos2x-3=0\)
\(\Leftrightarrow-2cos^22x+3\sqrt{2}cos2x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\sqrt{2}\left(loại\right)\\cos2x=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Chia đa thức nhé, đặt phép tính rồi chia như tiểu học/ cấp 2