K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 11 2021

Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?

\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)

\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)

\(\Leftrightarrow cos^22x+3cos2x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow...\)

3 tháng 10 2021

2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0

NV
28 tháng 12 2020

ĐKXĐ: \(sinx\ne\pm1\)

\(\dfrac{3cos2x-2sinx+5}{2\left(1-sin^2x\right)}=0\)

\(\Leftrightarrow3\left(1-2sin^2x\right)-2sinx+5=0\)

\(\Leftrightarrow-6sin^2x-2sinx+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(loại\right)\\sinx=-\dfrac{4}{3}< -1\left(loại\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

28 tháng 12 2020

tại sao \(cos\left(\dfrac{201\pi}{2}-x\right)\)lại là sinx vậy cậu

a/ \(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-cos2x}{2}\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-2cos^2x+1}{2}=\dfrac{2-2cos^2x}{2}=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1-cosx\right)\left(1+cosx\right)=0\)\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-cosx-1+cosx\right)=0\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\\2sinx-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=180^o\\x=30^o\end{matrix}\right.\)

 

 

28 tháng 5 2021

a) Đáp án: \(\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) \(3sin^2x+7cos2x-3=0\)

\(\Leftrightarrow3sin^2x+7\left(1-2sin^2x\right)-3=0\)

\(\Leftrightarrow11.sin^2x=4\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{2\sqrt{11}}{11}\\sinx=\dfrac{-2\sqrt{11}}{11}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\end{matrix}\right.\) (\(k\in Z\)) (Dị quá,câu này e ko biết đ/a đúng hay sai đâu)

Vậy...

c)\(\dfrac{4.sin^2x+6.sin^2x-9-3.cos2x}{cosx}=0\) (đk: \(x\ne\dfrac{\pi}{2}+k\pi\),\(k\in Z\))

\(\Rightarrow10sin^2x-9-3\left(1-2.sin^2x\right)=0\)

\(\Leftrightarrow sin^2x=\dfrac{3}{4}\)\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{\sqrt{3}}{2}\\sinx=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)(\(k\in Z\)) (Thỏa mãn đk)

Vậy...

30 tháng 8 2018

a) ta có : \(2sin^2x+3cos2x=0\Leftrightarrow2sin^2x+3\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow3-4sin^2x=0\Leftrightarrow sin^2x=\dfrac{3}{4}\Leftrightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

th1 : \(sinx=\dfrac{\sqrt{3}}{2}\Leftrightarrow sinx=sin\dfrac{\pi}{3}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

th2 : \(sinx=\dfrac{-\sqrt{3}}{2}\Leftrightarrow sinx=sin\left(\dfrac{-\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

vậy phương trình có 4 hệ nghiệm : \(x=\dfrac{\pi}{3}+k2\pi;x=\dfrac{2\pi}{3}+k2\pi;x=\dfrac{-\pi}{3}+k2\pi;x=\dfrac{4\pi}{3}+k2\pi\)

NV
25 tháng 7 2020

e/

\(\Leftrightarrow3\left(1-cos6x\right)-\left(2cos^26x-1\right)=4\)

\(\Leftrightarrow-2cos^26x-3cos6x=0\)

\(\Leftrightarrow cos6x\left(2cos6x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cos6x=0\\cos6x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow6x=\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{3}\)

NV
25 tháng 7 2020

d/

\(\Leftrightarrow3\left(1-cos2x\right)-2\left(1-cos^22x\right)=5\)

\(\Leftrightarrow2cos^22x-3cos2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{3+\sqrt{41}}{4}\left(l\right)\\cos2x=\frac{3-\sqrt{41}}{4}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{1}{2}arccos\left(\frac{3-\sqrt{41}}{4}\right)+k\pi\)

Nghiệm xấu quá :(

NV
26 tháng 7 2020

e/

ĐKXĐ: ...

\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)

\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)

Đặt \(\frac{1}{cosx}=t\)

\(\Rightarrow9t^2-13t+4=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

NV
26 tháng 7 2020

d/

\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)

\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^22x+sin2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

30 tháng 8 2018

a) ta có : \(2sin^2x+3cos2x=0\Leftrightarrow2sin^2x+3\left(1-2sin^2x\right)=0\)

\(\Leftrightarrow3-4sin^2x=0\Leftrightarrow sin^2x=\dfrac{3}{4}\Leftrightarrow sinx=\pm\dfrac{\sqrt{3}}{2}\)

th1 : \(sinx=\dfrac{\sqrt{3}}{2}\Leftrightarrow sinx=sin\dfrac{\pi}{3}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

th2 : \(sinx=\dfrac{-\sqrt{3}}{2}\Leftrightarrow sinx=sin\left(\dfrac{-\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)

vậy phương trình có 4 hệ nghiệm : \(x=\dfrac{\pi}{3}+k2\pi;x=\dfrac{2\pi}{3}+k2\pi;x=\dfrac{-\pi}{3}+k2\pi;x=\dfrac{4\pi}{3}+k2\pi\)

câu b bn làm tương tự cho quen nha