K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

AB//BD => VL => sai de

18 tháng 11 2017

mình cần gấp trả lời cang nhanh cang tốt nha

29 tháng 8 2018

Bh trả lời đc k

a: Xét ΔAOB và ΔCOD có

OA=OC

OB=OD

AB=CD

Do đó: ΔAOB=ΔCOD

b: Ta có: ΔAOB=ΔCOD

nên \(\widehat{AOB}=\widehat{COD}\)

14 tháng 2 2017

Hình đa giác TenDaGiac2: DaGiac[B, A, 3] Hình đa giác TenDaGiac3: DaGiac[A, C, 3] Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng f: Đoạn thẳng [B, A] của Hình đa giác TenDaGiac2 Đoạn thẳng g: Đoạn thẳng [A, D] của Hình đa giác TenDaGiac2 Đoạn thẳng h: Đoạn thẳng [D, B] của Hình đa giác TenDaGiac2 Đoạn thẳng i: Đoạn thẳng [A, C] của Hình đa giác TenDaGiac3 Đoạn thẳng j: Đoạn thẳng [C, E] của Hình đa giác TenDaGiac3 Đoạn thẳng k: Đoạn thẳng [E, A] của Hình đa giác TenDaGiac3 Đoạn thẳng n: Đoạn thẳng [E, F] Đoạn thẳng p: Đoạn thẳng [D, F] Đoạn thẳng q: Đoạn thẳng [F, C] Đoạn thẳng r: Đoạn thẳng [F, B] A = (-1.38, 6.9) A = (-1.38, 6.9) A = (-1.38, 6.9) B = (-2.52, 4.02) B = (-2.52, 4.02) B = (-2.52, 4.02) C = (1.98, 4.04) C = (1.98, 4.04) C = (1.98, 4.04) Điểm D: DaGiac[B, A, 3] Điểm D: DaGiac[B, A, 3] Điểm D: DaGiac[B, A, 3] Điểm E: DaGiac[A, C, 3] Điểm E: DaGiac[A, C, 3] Điểm E: DaGiac[A, C, 3] Điểm F: Giao điểm của l, m Điểm F: Giao điểm của l, m Điểm F: Giao điểm của l, m 60 o

Xét tứ giác ADFE có các cặp cạnh đối bằng nhau nên nó là hình bình hành. Vậy thì \(\widehat{FDA}=\widehat{FEA}\)

Suy ra \(\widehat{BDF}=\widehat{FDA}+60^o=\widehat{FEA}+60^o=\widehat{FEC}\)

Xét tam giác BDF và tam giác FEC có: BD = EF ; DF = EC; \(\widehat{BDF}=\widehat{FEC}\)

\(\Rightarrow\Delta BDF=\Delta FEC\left(c-g-c\right)\Rightarrow BF=CF\) . Vậy FBC là tam giác cân.

Ta thấy theo tính chất hình bình hành:  \(\widehat{DFE}=180^o-\widehat{FEA}\) (1)

Lại có : \(\widehat{DFE}=\widehat{DFB}+\widehat{BFC}+\widehat{EFC}=\widehat{BFC}+\left(\widehat{DFB}+\widehat{EFC}\right)\)

\(=\widehat{BFC}+\left(\widehat{ECF}+\widehat{EFC}\right)\)

\(=\widehat{BFC}+\left(180^o-60^o-\widehat{FEA}\right)=\widehat{BFC}+120^o-\widehat{FEA}\) (2)

Từ (1) và (2) suy ra \(\widehat{BFC}=60^o\)

Suy ra FBC là tam giác đều.

14 tháng 2 2017

FBC 1000000000% luôn đấy nhá

30 tháng 6 2015

1) (O): OA=OB =R => TAM GIÁC AOB CÂN => GÓC OAB=OBA

TƯƠNG TỢ VỚI (O') => GÓC O'AB=O'BA

=> OAB+O'AB=0BA+O'BA => OAO'=OBO'

2) CÁI NÀY ĐÃ CÓ TRONG TÍNH CHẤT ĐƯỢC SỬ DỤNG CỦA 2 ĐƯỜNG TRÒN CẮT NHAU: NẾU AI ĐƯỜNG TRÒN CẮT NHAU THÌ ĐƯỜNG NỐI TÂM LÀ ĐƯỜNG TRUNG TRỰC CỦA  DÂY CHUNG

3) XÉT (O): GÓC DAB=GÓC CAB( GÓC NT VÀ GÓC TB TIA TIẾP TUYẾN VÀ DÂY CUNG CÙNG CHẮN CUNG AB)

(O'): GÓC CAB=DAB (( GÓC NT VÀ GÓC TB TIA TIẾP TUYẾN VÀ DÂY CUNG CÙNG CHẮN CUNG AB)

XÉT TAM GIÁC ABD VÀ TAM GIÁC CBA: GÓC DAB=GÓC CAB;  GÓC CAB=DAB

=> 2 TAM GIÁC ĐỒNG DẠNG (G.G) => \(\frac{AB}{BC}=\frac{BD}{AB}\Rightarrow AB^2=BD.BC\)

4) 

TA CÓ: AC LÀ TIẾP TUYẾN CỦA (O) => GÓC OAC=90. NẾU OAO' =90 => C  THUỘC OA'. MẶT KHÁC C THUỘC (O') => AC LÀ ĐƯỜNG KÍNH (O') => GÓC ABC=90 ( GỌI NT CHẮN NỬA ĐƯỜNG TRÒN)=> AB VUÔNG GÓC BC

TƯƠNG TỰ CHỨNG MINH: D THUỘC OA => AD LÀ ĐƯỜNG KÍNH CỦA (O)  => GÓC ABD=90 ( GỌI NT CHẮN NỬA ĐƯỜNG TRÒN)=> AB VUÔNG GÓC BD

=> 3 ĐIỂM B,D,C THẲNG HÀNG.

 

11 tháng 11 2016

A B C D a)

ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C

ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD

CM tương tự ta có: CD=AB

xét \(\Delta ABC\)\(\Delta DCB\) có:

BD=AC(cmt)

AB=DC(cmt)

BC(chung)

\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)

=>\(\widehat{BAC}=\widehat{BDC}=80^o\)

b)

theo câu a, ta có:

\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)

=>CD//AB(2 góc slt)

 

11 tháng 11 2016

A B C D Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn

ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé