K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

Đáp án là B

Do AB là đường kính đường tròn (O); C nằm trên đường tròn nên ΔCAB vuông tại C

Mặt khác tâm đường tròn nội tiếp là giao điểm 3 đường phân giác trong

⇒ I thuộc cung chứa góc 45 0  dựng trên đoạn AB.

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Đáp án C.

3 tháng 4 2021

C nhé bạn 

Công thức của nó có tính góc BIC = 90 + BAC/2=135

27 tháng 5 2021

TK:

a.

xét tứ giác BDMI ta có : IMD = 90 (CD  MI)

IBD = 90 (BD là tiếp tuyến)

mà 2 góc này ở vị trí đối nhau tứ giác BDMI là tứ giác nội tiếp

 DMB = DIB (2 góc nội tiếp cùng chắng cung DB của tứ giác BDMI) (1)

xét tứ giác ACMI ta có : IAC = 90 (AC là tiếp tuyến)

IMC = 90 (CD  MI)

mà 2 góc này ở vị trí đối nhau ⇒⇒ tứ giác ACMI là tứ giác nội tiếp

 CMA = CIA (2 góc nội tiếp cung chắng cung AC của tứ giác ACMI) (2)

mà CMA + DMB = 90 (góc AMB là góc nội tiếp chắng nửa (o)) (3)

tứ (1) ; (2) và (3) ta có : CIA + DIB = 90

 CID = 180 - 90 = 90

xét tứ giác MIEF ta có : AMB = 90 (góc nội tiếp chắng nửa (o))

CID = 90 (chứng minh trên)

mà 2 góc này ở vị trí đối nhau  tứ giác MIEF là tứ giác nội tiếp (đpcm)

27 tháng 5 2021

TK:b) ta có

\(\widehat{MEF}\)=\(\widehat{MIE}\)=\(\widehat{MIC}\)=\(\widehat{MAC}\)=\(\widehat{MBA}\)

 EF // AB (đpcm)

c.

Ta có \(\widehat{AMO}\)=\(\widehat{OAM}\)=\(\widehat{IAM}\)=\(\widehat{ICM}\)=\(\widehat{MCE}\)

→OM là tiếp tuyến của (CME và DFM)

12 tháng 2 2016

Mình giải thử ra đây sau bạn tự vẽ hình kiểm tra lại cho mình nha 

(+) Mục tiêu đi tính BMC 

Kẻ MH vg AB ; MK vg AC ; MI vuông góc với BC 

Dễ thấy BAC = 1/2 sdBC= 148 / 2 = 74 độ 

tg MHAK có H + K + A + HMK = 360 độ 

=> 90 + 90 + 74 + HMK = 360 độ 

=> HMK = 106 độ 

=> BMC = 1/2 HMK = 53 độ 

 

12 tháng 2 2016

dung do doi xi mk giai da

21 tháng 11 2017

O B A C M N P Q I K

a) Do AMNP là hình vuông nên \(\widehat{QMB}=45^o\)

Lại có do C là điểm chính giữa của nửa đường tròn nên \(\widebat{CB}=90^o\Rightarrow\widehat{CMB}=45^o\)

(Góc nội tiếp)

Vậy thì \(\widehat{CMQ}=\widehat{CMB}+\widehat{BMQ}=45^o+45^o=90^o\)

Vậy CQ là đường kính hay C và Q đối xứng nhau qua O.

b) Ta thấyAMNP là hình vuông.  MI là phân giác góc \(\widehat{AMB}\)  nên \(\Delta MAI=\Delta MNI\left(c-g-c\right)\Rightarrow\widehat{MAI}=\widehat{MNI}\)

Lại có \(\widehat{MAI}=\widehat{IAM}\) nên \(\widehat{MNI}=\widehat{IAM}\)

Xét tứ giác AINB có  \(\widehat{MNI}=\widehat{IAM}\) nên AINB là tứ giác nội tiếp (góc ngoài tại đỉnh bằng góc đối diện)