K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

Từ O kẻ đg thg vg góc vs AB tại H

=> AH=BH=AB/2 = R căn 3 /2 

Theo hệ thức lượng trong tam giác AHO vuông ở H ta có 

SIN góc AOH = R căn 3 /2 : R 

                      = căn 3/2 = 60 

=> Góc AOB = 2 góc AOH= 2*60 =120

SĐ AB nhỏ =120

SĐ AB lớn = 360 - sđ AB nhỏ = 360 -120 = 240

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:
a. Câu hỏi chưa rõ ràng

b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
 đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$

Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$

$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$

$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$

$\Rightarrow AB=2AH=\sqrt{3}R$

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Hình vẽ:

20 tháng 3 2016

S=OA*OB*sin120=r^2*sin120

14 tháng 4 2018

trắc nghiệm thôi..nên giải giúp tôi với ạ^^

11 tháng 11 2018

Tính được sđ  A B ⏜ nhỏ = A O B ^ = 90 0

Suy ra sđ  A B ⏜ lớn  =  270 0

4 tháng 3 2021

undefined

`a,`  Ta có: `AO=OB(=R)`

Và: `AB=R` (giả thiết).

`=>AO=AB=BO`

Xét \(\Delta ABO\) có:

`AO=OB=AB(cmt)`

`=>` \(\Delta ABO\) là tam giác đều.

`b,` Ta có: \(\Delta ABO\) là tam giác đều nên:

`=>` \(\widehat{AOB}=60^0\)

Lại có: \(\widehat{AOB}=\dfrac{1}{2}sđ\stackrel\frown{AnB}\) (góc nội tiếp).

\(\Rightarrow sđ\stackrel\frown{AnB}=2\widehat{AOB}=2\cdot60^0=120^0\)

\(\Rightarrow sđ\stackrel\frown{AmB}=360^0-sđ\stackrel\frown{AnB}=360^0-120^0=240^0\)

`c,` Ta có: \(\widehat{AOB}+\widehat{BOC}=180^0\) (kề bù).

\(\Rightarrow\widehat{BOC}=180^0-\widehat{AOB}=180^0-60^0=120^0\)

Mặt khác: \(sđ\stackrel\frown{BnC}=\widehat{BOC}=120^0\) (góc ở tâm).

\(\Rightarrow sđ\stackrel\frown{CAB}=360^0-sđ\stackrel\frown{BnC}=360^0-120^0=240^0\)