Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ O kẻ đg thg vg góc vs AB tại H
=> AH=BH=AB/2 = R căn 3 /2
Theo hệ thức lượng trong tam giác AHO vuông ở H ta có
SIN góc AOH = R căn 3 /2 : R
= căn 3/2 = 60
=> Góc AOB = 2 góc AOH= 2*60 =120
SĐ AB nhỏ =120
SĐ AB lớn = 360 - sđ AB nhỏ = 360 -120 = 240
Lời giải:
a. Câu hỏi chưa rõ ràng
b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$
Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$
$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=2AH=\sqrt{3}R$
Tính được sđ A B ⏜ nhỏ = A O B ^ = 90 0
Suy ra sđ A B ⏜ lớn = 270 0
`a,` Ta có: `AO=OB(=R)`
Và: `AB=R` (giả thiết).
`=>AO=AB=BO`
Xét \(\Delta ABO\) có:
`AO=OB=AB(cmt)`
`=>` \(\Delta ABO\) là tam giác đều.
`b,` Ta có: \(\Delta ABO\) là tam giác đều nên:
`=>` \(\widehat{AOB}=60^0\)
Lại có: \(\widehat{AOB}=\dfrac{1}{2}sđ\stackrel\frown{AnB}\) (góc nội tiếp).
\(\Rightarrow sđ\stackrel\frown{AnB}=2\widehat{AOB}=2\cdot60^0=120^0\)
\(\Rightarrow sđ\stackrel\frown{AmB}=360^0-sđ\stackrel\frown{AnB}=360^0-120^0=240^0\)
`c,` Ta có: \(\widehat{AOB}+\widehat{BOC}=180^0\) (kề bù).
\(\Rightarrow\widehat{BOC}=180^0-\widehat{AOB}=180^0-60^0=120^0\)
Mặt khác: \(sđ\stackrel\frown{BnC}=\widehat{BOC}=120^0\) (góc ở tâm).
\(\Rightarrow sđ\stackrel\frown{CAB}=360^0-sđ\stackrel\frown{BnC}=360^0-120^0=240^0\)