K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

a) Do \(OA=OB\)      (2 bán kính)

=> Tam giác OAB cân tại O

Mà OH là đường trung tuyến

=> OH cũng là đường cao ứng với AB

=> OH vuông góc AB.

(VẬY TA CÓ ĐPCM).

b) Có: góc CDA là góc nội tiếp chắn nửa đường tròn

=> góc CDA = 90 độ

=> CD vuông góc AD

Xét tam giác CAK vuông tại A (gt) và AD vuông góc CK (CMT)

=> Áp dụng HTL thì:    \(CD.CK=CA^2=2\left(OA\right)^2=4R^2\)

VẬY TA CÓ ĐPCM.

c) Có:    \(sinC=\frac{AD}{AC};cosC=\frac{CD}{AC}\)

=> \(2R.sinC.cosC=2R.\left(\frac{AD.CD}{AC^2}\right)=2R.\left(\frac{AD.CD}{CD.CK}\right)=2R.\left(\frac{AD}{CK}\right)\)      (HTL: \(AC^2=CD.CK\))

=>   \(\frac{AD^2}{2R.sinC.cosC}=\frac{AD^2}{\frac{2R.AD}{CK}}=\frac{AD^2.CK}{2R.AD}=\frac{AD.CK}{2R}=\frac{AD.CK}{AC}\)

Áp dụng tiếp tục HTL ta được: 

=>    \(AD.CK=AC.AK\)

=>   \(VP=\frac{AC.AK}{AC}=AK\)

VẬY TA CÓ ĐPCM.

14 tháng 8 2020

Câu d nhaaaaaaaaa !!!!!

Có: OA; OB là 2 tiếp tuyến của O và cắt nhau tại K

=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được: 

=> OK vuông góc với AB.

Tương tự thì: OC và OD cũng là 2 tiếp tuyến của O và cắt nhau tại E

=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được: 

=> OE vuông góc với CD. 

* Áp dụng HTL vào tam giác OAK vuông tại A có AH vuông góc với OK:

=>   \(OH.OK=OA^2\)

* Áp dụng HTL vào tam giác OCE vuông tại C  có CI vuông góc với OE: 

=>   \(OI.OE=OC^2\)

Mà:    \(OA=OE\)     {2 BÁN KÍNH CỦA (O)}

=>    \(OH.OK=OI.OE\)

(VẬY TA CÓ ĐPCM).

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CA⊥CB

mà CA⊥OH

nên OH//BC

b: Xét (O) có

OH là một phần đường kính

AC là dây

OH⊥AC tại H

Do đó: H là trung điểm của AC

Xét ΔMAC có 

MH là đường trung tuyến

MH là đường cao

Do đó: ΔMAC cân tại M

Xét ΔOAM và ΔOCM có

OA=OC

MA=MC

OM chung

Do đó:ΔOAM=ΔOCM

Suy ra: \(\widehat{OAM}=\widehat{OCM}=90^0\)

hay MA là tiếp tuyến của (O)

28 tháng 1 2019

a, HS tự làm

b, HS tự làm

c, IK = 1 2 CK =  1 2 AC.sinα = R.cosα.sinα

d, Giả sử BI cắt AM tại N. Vì IK//AM => MO = OP

=>  1 O I 2 = 1 O M 2 + 1 O N 2

=  1 O P 2 + 1 O N 2 = 1 O B 2 => M ≡ N

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0