K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020
Chịu rồi bạn ơi
14 tháng 8 2020

a) Do \(OA=OB\)      (2 bán kính)

=> Tam giác OAB cân tại O

Mà OH là đường trung tuyến

=> OH cũng là đường cao ứng với AB

=> OH vuông góc AB.

(VẬY TA CÓ ĐPCM).

b) Có: góc CDA là góc nội tiếp chắn nửa đường tròn

=> góc CDA = 90 độ

=> CD vuông góc AD

Xét tam giác CAK vuông tại A (gt) và AD vuông góc CK (CMT)

=> Áp dụng HTL thì:    \(CD.CK=CA^2=2\left(OA\right)^2=4R^2\)

VẬY TA CÓ ĐPCM.

c) Có:    \(sinC=\frac{AD}{AC};cosC=\frac{CD}{AC}\)

=> \(2R.sinC.cosC=2R.\left(\frac{AD.CD}{AC^2}\right)=2R.\left(\frac{AD.CD}{CD.CK}\right)=2R.\left(\frac{AD}{CK}\right)\)      (HTL: \(AC^2=CD.CK\))

=>   \(\frac{AD^2}{2R.sinC.cosC}=\frac{AD^2}{\frac{2R.AD}{CK}}=\frac{AD^2.CK}{2R.AD}=\frac{AD.CK}{2R}=\frac{AD.CK}{AC}\)

Áp dụng tiếp tục HTL ta được: 

=>    \(AD.CK=AC.AK\)

=>   \(VP=\frac{AC.AK}{AC}=AK\)

VẬY TA CÓ ĐPCM.

14 tháng 8 2020

Câu d nhaaaaaaaaa !!!!!

Có: OA; OB là 2 tiếp tuyến của O và cắt nhau tại K

=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được: 

=> OK vuông góc với AB.

Tương tự thì: OC và OD cũng là 2 tiếp tuyến của O và cắt nhau tại E

=> Áp dụng tính chất 2 tiếp tuyến cắt nhau ta được: 

=> OE vuông góc với CD. 

* Áp dụng HTL vào tam giác OAK vuông tại A có AH vuông góc với OK:

=>   \(OH.OK=OA^2\)

* Áp dụng HTL vào tam giác OCE vuông tại C  có CI vuông góc với OE: 

=>   \(OI.OE=OC^2\)

Mà:    \(OA=OE\)     {2 BÁN KÍNH CỦA (O)}

=>    \(OH.OK=OI.OE\)

(VẬY TA CÓ ĐPCM).

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CA⊥CB

mà CA⊥OH

nên OH//BC

b: Xét (O) có

OH là một phần đường kính

AC là dây

OH⊥AC tại H

Do đó: H là trung điểm của AC

Xét ΔMAC có 

MH là đường trung tuyến

MH là đường cao

Do đó: ΔMAC cân tại M

Xét ΔOAM và ΔOCM có

OA=OC

MA=MC

OM chung

Do đó:ΔOAM=ΔOCM

Suy ra: \(\widehat{OAM}=\widehat{OCM}=90^0\)

hay MA là tiếp tuyến của (O)

28 tháng 1 2019

a, HS tự làm

b, HS tự làm

c, IK = 1 2 CK =  1 2 AC.sinα = R.cosα.sinα

d, Giả sử BI cắt AM tại N. Vì IK//AM => MO = OP

=>  1 O I 2 = 1 O M 2 + 1 O N 2

=  1 O P 2 + 1 O N 2 = 1 O B 2 => M ≡ N