K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 10 2021

ta có : 

undefined

9 tháng 11 2021

loading...  loading...  

22 tháng 4 2017

Đặt OH = x cm (R = OH)

Ta có OM = x – 4 cm

Áp đụng định lý Pytago ta tìm được x = 10cm

9 tháng 9 2020

C D H M O K

 Kéo dài HO về phía O cắt (o) tại K => KH là đường kính (o). Nối CH; CK ta có 

^KCH=90 (góc nội tiếp chắn nửa đường tròn)

CM=DM=CD/2=8 cm (bán kính vuông góc với dây cung thì chia đôi dây cung)

 Xét tg vuông KCH có \(CM^2=MH.MK\Rightarrow8^2=4.MK\Rightarrow MK=16cm\)

\(\Rightarrow KH=MH+MK=4+16=20cm\Rightarrow OK=\frac{KH}{2}=10cm\)

a: ΔOAB cân tại O

mà OI là đường trung tuyến

nên OI vuông góc AB

I là trung điểm của AB

=>IA=IB=16/2=8cm

ΔOIA vuông tại I

=>OA^2=OI^2+IA^2

=>OI^2=10^2-8^2=36

=>OI=6(cm)

b: OM=OI+IM

=>6+IM=10

=>IM=4cm

ΔMIA vuông tại I

=>MI^2+IA^2=MA^2

=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)

3 tháng 9 2021

a CD <AB,b IE=OE-OI=OF-OI<OF-OH=HF

3 tháng 9 2021

a) CD<AB,b)IE=OE-OI=OF-OI<OF-OH=HF

 

 

Ta có: AH=EH(H là trung điểm của AE)

mà \(AH=\dfrac{1}{3}R\)(gt)

nên \(EH=\dfrac{1}{3}R\)

Ta có: AH+EH=AE(H là trung điểm của AE)

nên \(AE=\dfrac{1}{3}R+\dfrac{1}{3}R=\dfrac{2}{3}R\)

Ta có: AE+OE=OA(E nằm giữa O và A)

nên \(OE=OA-AE=R-\dfrac{2}{3}R=\dfrac{1}{3}R\)

Ta có: OE+EH=OH(E nằm giữa O và H)

nên \(OH=\dfrac{1}{3}R+\dfrac{1}{3}R=\dfrac{2}{3}R\)

Áp dụng định lí Pytago vào ΔOHD vuông tại H, ta được:

\(OD^2=OH^2+HD^2\)

\(\Leftrightarrow HD^2=R^2-\dfrac{4}{9}R^2=\dfrac{5}{9}R^2\)

\(\Leftrightarrow HD=\dfrac{\sqrt{5}}{3}R\)

Xét (O) có 

OA là một phần đường kính

CD là dây

OA\(\perp\)CD tại H(gt)

Do đó: H là trung điểm của CD(Định lí đường kính vuông góc với dây)

\(\Leftrightarrow CD=2\cdot DH=2\cdot\dfrac{\sqrt{5}}{3}R=\dfrac{2\sqrt{5}}{3}R\)

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)