Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [A, N] Đoạn thẳng j: Đoạn thẳng [A, M] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [M, O] Đoạn thẳng m: Đoạn thẳng [N, O] Đoạn thẳng n: Đoạn thẳng [N, H] Đoạn thẳng p: Đoạn thẳng [M, H] Đoạn thẳng q: Đoạn thẳng [O, H] Đoạn thẳng r: Đoạn thẳng [N, M] Đoạn thẳng t: Đoạn thẳng [E, B] Đoạn thẳng a: Đoạn thẳng [E, H] Đoạn thẳng b: Đoạn thẳng [C, M] O = (-1.94, 4.32) O = (-1.94, 4.32) O = (-1.94, 4.32) A = (5.34, 4.66) A = (5.34, 4.66) A = (5.34, 4.66) Điểm N: Giao điểm của c, f Điểm N: Giao điểm của c, f Điểm N: Giao điểm của c, f Điểm M: Giao điểm của c, g Điểm M: Giao điểm của c, g Điểm M: Giao điểm của c, g Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm B: Giao điểm của c, h Điểm B: Giao điểm của c, h Điểm B: Giao điểm của c, h Điểm H: Trung điểm của C, B Điểm H: Trung điểm của C, B Điểm H: Trung điểm của C, B Điểm E: Giao điểm của s, r Điểm E: Giao điểm của s, r Điểm E: Giao điểm của s, r
a. Dễ thấy AMON nội tiếp vì \(\widehat{AMO}=\widehat{ANO}=90^o\)
b. Do H là trung điểm BC nên \(OH⊥HA\), vậy H, M, A, N, O cùng thuộc đường tròn đường kính AO.
Ta có \(\widehat{NHA}=\widehat{NMA}=\widehat{MNA}=\widehat{MHA}\) (Góc nội tiếp cùng chắn cung và AM = AN)
Vậy HA là phân giác góc MHN.
c. Xét đường tròn ngoại tiếp tứ giác HMAN có: \(\widehat{HNM}=\widehat{HAM}\) (Góc nội tiếp cùng chắn cung HM)
Mà \(\widehat{HAM}=\widehat{HBE}\)(Đồng vị)
Vậy nên \(\widehat{HNE}=\widehat{HBE}\) hay HNBE nội tiếp.
Suy ra \(\widehat{ENB}=\widehat{EHB}\) (Cùng chắn cung EB)
Mà \(\widehat{ENB}=\widehat{MCB}\) (Cùng chắn cung MB) nên \(\widehat{EHB}=\widehat{MCB}\)
Chúng lại ở vị trí đồng vị nên HE // CM.
a) Xét tứ giác OMAN có
\(\widehat{OMA}\) và \(\widehat{ONA}\) là hai góc đối
\(\widehat{OMA}+\widehat{ONA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OMAN là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay O,M,A,N cùng thuộc một đường tròn(đpcm)
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
a: ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
Xét tứ giác AION có
góc AIO+góc ANO=180 độ
=>AION là tứ giác nội tiếp
b: Xét ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM/AC=AB/AM
=>AM^2=AB*AC
a: ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
Xét tứ giác AION có
góc OIA+góc ONA=180 độ
=>AION là tứ giác nội tiếp
b: Xét ΔAMB và ΔACM có
góc AMB=góc ACM
góc MAB chung
=>ΔAMB đồng dạng với ΔACM
=>AM/AC=AB/AM
=>AM^2=AB*AC
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)