K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác OHAN có 

\(\widehat{OHA}+\widehat{ONA}=180^0\)

Do đó: OHAN là tứ giác nội tiếp

hay O,H,A,N cùng thuộc 1 đường tròn(1)

Xét tứ giác OMAN có 

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

hay O,M,A,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra O,H,M,A,N cùng nằm trên 1 đường tròn

30 tháng 5 2021

a) Trong (O) có BC là dây cung không đi qua O có H là trung điểm BC

\(\Rightarrow OH\bot BC\Rightarrow\angle OHA=90\) mà \(\left\{{}\begin{matrix}\angle ONA=90\\\angle OMA=90\end{matrix}\right.\Rightarrow AMHO,ANOH\) nội tiếp \(\Rightarrow A,M,N,O,H\) cùng thuộc 1 đường tròn

b) \(AMHN\) nội tiếp \(\Rightarrow\angle AHN=\angle AMN=\angle ANM=\angle AHM\)

\(\Rightarrow\) HA là phân giác góc MHN

c) \(BE\parallel AM\Rightarrow \angle HBE=\angle HAM=\angle HNM\Rightarrow BEHN\) nội tiếp 

\(\Rightarrow\angle BHE=\angle BNE=\angle BNM=\angle BCM\Rightarrow\)\(HE\parallel CM\)

17 tháng 4 2022

mỗi v thôi sao

13 tháng 6 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [A, N] Đoạn thẳng j: Đoạn thẳng [A, M] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [M, O] Đoạn thẳng m: Đoạn thẳng [N, O] Đoạn thẳng n: Đoạn thẳng [N, H] Đoạn thẳng p: Đoạn thẳng [M, H] Đoạn thẳng q: Đoạn thẳng [O, H] Đoạn thẳng r: Đoạn thẳng [N, M] Đoạn thẳng t: Đoạn thẳng [E, B] Đoạn thẳng a: Đoạn thẳng [E, H] Đoạn thẳng b: Đoạn thẳng [C, M] O = (-1.94, 4.32) O = (-1.94, 4.32) O = (-1.94, 4.32) A = (5.34, 4.66) A = (5.34, 4.66) A = (5.34, 4.66) Điểm N: Giao điểm của c, f Điểm N: Giao điểm của c, f Điểm N: Giao điểm của c, f Điểm M: Giao điểm của c, g Điểm M: Giao điểm của c, g Điểm M: Giao điểm của c, g Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm B: Giao điểm của c, h Điểm B: Giao điểm của c, h Điểm B: Giao điểm của c, h Điểm H: Trung điểm của C, B Điểm H: Trung điểm của C, B Điểm H: Trung điểm của C, B Điểm E: Giao điểm của s, r Điểm E: Giao điểm của s, r Điểm E: Giao điểm của s, r

a. Dễ thấy AMON nội tiếp vì \(\widehat{AMO}=\widehat{ANO}=90^o\)

b. Do H là trung điểm BC nên \(OH⊥HA\), vậy H, M, A, N, O cùng thuộc đường tròn đường kính AO.

Ta có \(\widehat{NHA}=\widehat{NMA}=\widehat{MNA}=\widehat{MHA}\) (Góc nội tiếp cùng chắn cung và AM = AN)

Vậy HA là phân giác góc MHN.

c. Xét đường tròn ngoại tiếp tứ giác HMAN có: \(\widehat{HNM}=\widehat{HAM}\) (Góc nội tiếp cùng chắn cung HM)

Mà \(\widehat{HAM}=\widehat{HBE}\)(Đồng vị)

Vậy nên \(\widehat{HNE}=\widehat{HBE}\) hay HNBE nội tiếp.

Suy ra \(\widehat{ENB}=\widehat{EHB}\) (Cùng chắn cung EB)

Mà \(\widehat{ENB}=\widehat{MCB}\) (Cùng chắn  cung MB) nên  \(\widehat{EHB}=\widehat{MCB}\)

Chúng lại ở vị trí đồng vị nên HE // CM.

29 tháng 10 2023

a: Xét tứ giác KBOD có

\(\widehat{OBK}+\widehat{ODK}=180^0\)

=>KBOD là tứ giác nội tiếp

b: Xét (O) có

KB,KD là tiếp tuyến

=>KB=KD

mà OB=OD

nên OK là trung trực của BD

=>OK cắt BD tại trung điểm của BD

=>O,I,K thẳng hàng và OK\(\perp\)BD tại I

Xét ΔKBA và ΔKCB có

\(\widehat{KBA}=\widehat{KCB}\)

\(\widehat{BKA}\) chung

Do đó: ΔKBA đồng dạng với ΔKCB

=>KB/KC=KA/KB

=>\(KB^2=KA\cdot KC\)(1)

Xét ΔKBO vuông tại B có BI là đường cao

nên \(KI\cdot KO=KB^2\left(2\right)\)

Từ (1) và (2) suy ra \(KA\cdot KC=KI\cdot KO\)

20 tháng 4 2020

A B C M I O D

20 tháng 4 2020

a.Vì AB là tiếp tuyến của (O)

\(\Rightarrow MB\) là tiếp tuyến của (O)

\(\Rightarrow\widehat{MBI}=\widehat{BCM}\)

\(\Rightarrow\Delta MBI~\Delta MCB\left(g.g\right)\)

b ) Từ câu a ) \(\Rightarrow\frac{MB}{MC}=\frac{MI}{MB}\Rightarrow MB^2=MI.MC\)

Mà M là trung điểm AB \(\Rightarrow MA=MB\Rightarrow MA^2=MI.MC\)

\(\Rightarrow\frac{MA}{MI}=\frac{MC}{MA}\Rightarrow\Delta MAI~\Delta MCA\left(c.g.c\right)\)

c ) Từ câu a , b \(\Rightarrow\widehat{MBI}=\widehat{MCI},\widehat{MAI}=\widehat{ACI}\)

\(\Rightarrow\widehat{BCD}=\widehat{BID}=\widehat{IBA}+\widehat{IAB}=\widehat{ICB}+\widehat{ICA}=\widehat{BCA}=\widehat{BDC}\)

\(\Rightarrow\Delta BCD\) cân tại B

15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)