\(y=\left(\frac{m^2-1}{2m}\right)x+\frac{2m+1}{m}\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

7 tháng 10 2018

TH1: m = 0 => -2y = 2 => y = -1

Nên (d) đi qua điểm (0; -1) cố định

TH2: m # 0

Giả sử A(xo;yo) là điểm mà (d) luôn đi qua

\(\Leftrightarrow m\sqrt{3}x_0+2my_0-2y_0-m-2=0\\ \Leftrightarrow m\left(\sqrt{3}x_0+2y_0-1\right)-2y_0-2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x_0+2y_0-1=0\\2y_0+2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y_0=-1\\x=\sqrt{3}\end{matrix}\right.\)

Nên (d) đi qua điểm A(√3; -1) cố định

Vậy với mọi m, đường thẳng (d) luôn đi qua 1 điểm cố định

NV
9 tháng 3 2020

Phương trình hoành độ giao điểm:

\(\left(m-1\right)x-m^2-2m=\left(m-2\right)x-m^2-m+1\)

\(\Leftrightarrow x=m+1\)

\(\Rightarrow y=\left(m-1\right)\left(m+1\right)-m^2-2m=-2m-1\)

\(\Rightarrow Q\left(m+1;-2m-1\right)\)

\(2x_Q+y_Q=2m+2-2m-1=1\) \(\forall m\)

\(\Leftrightarrow y_Q=-2x_Q+1\) \(\forall m\)

\(\Rightarrow Q\) luôn thuộc đường thẳng cố định \(y=-2x+1\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2017

Lời giải:

Xét (d1)

\(y=4mx-(m+5)\)

\(\Leftrightarrow m(4x-1)-(5+y)=0\)

Để pt đúng với mọi $m$ thì:

\(\left\{\begin{matrix} 4x-1=0\\ 5+y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{4}\\ y=-5\end{matrix}\right.\)

Vậy điểm A cố định khi m thay đổi là \(\left(\frac{1}{4}; -5\right)\)

Xét (d2)

\(y=(3m^2+1)x+(m^2-9)\)

\(\Leftrightarrow m^2(3x+1)+(x-y-9)=0\)

Để pt đúng với mọi m thì \(\left\{\begin{matrix} 3x+1=0\\ x-y-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{1}{3}\\ y=\frac{-28}{3}\end{matrix}\right.\)

Vậy điểm B cố định khi m thay đổi là \(\left(\frac{-1}{3}; \frac{-28}{3}\right)\)

Như vậy ta có đpcm.

\(BA=\sqrt{(-\frac{1}{3}-\frac{1}{4})^2+(\frac{-28}{3}+5)^2}=\frac{\sqrt{2753}}{12}\)