Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
OC vuông góc với OA = 90°
Mà OB' là phân giác A'OC
=> A'OB' = 90/2 = 45°
Mà OA là tia đối OA' (gt)
=> AOB = A'OB' = 45°
b) Vì B'OD = 90°
Mà A'OB' = 45°(cmt)
=> A'OD = 45°
=> A'OD = A'OB' = 45°
=> OA' là phân giác B'OD
Cho tam giác ABC, tia phân giác trong AD , M là điểm bất kì thuộc đường thẳng BC. Qua M vẽ đường thẳng song song với AD cắt AB,AC lần lượt tại P,Q. Chứng minh rằng tam giác APQ có hai góc bằng nhau
a) Vì OB' là tia p/g của góc A'OC nên góc A'OB' = A'OC /2 = 90o/ 2 = 45o
Vì tia OB' nằm giữa hai tia OA và OA' nên góc A'OB' + B' OA = A'OA
=> 45o + B'OA = 180o
=> B'OA = 180o - 45o = 135o
=> Góc B'OA + AOB = 135o + 45o = 180o Mà tia OA nằm giữa 2 tia OB và OB' ( Vì tia OB và OB' nằm ở nửa mp khác nhau bờ là AA')
=> góc BOB' = 180o => tia OB và OB' đối nhau
ta có góc AOB = A'OB' (= 45o) Mà tia OA và OA' đối nhau ; tia OB và OB' đối nhau
=> 2 góc AOB và A'OB' đối nhau
b) Tia OD nằm giữa 2 tia OB và OB' => góc B'OD + DOB = BOB"
=> B'OD + 900 = 180o
=> B'OD = 90o
Lại có tia OA' nằm giữa 2 tia OD và OB'
=> góc A'OB' + A'OD = B'OD
=> 45o + A'OD = 90o => góc A'OD = 45o