Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (gt)
^AIB = ^AIC (AI là đường trung trực của BC)
AI là cạnh chung
=> Vậy tam giác AIB = tam giác AIC (c.g.c)
2,a/ Vì ΔAIB = ΔAIC (cmt)
=> ^BAI = ^CAI (2 góc tương ứng)
Xét ΔAHI và ΔAKI, có:
^BAI = ^CAI (cmt)
AI chung (gt)
^AHI = ^AKI =90 độ (gt)
=> 2 tam giác = nhau
=> AH = AK (2 cạnh tương ứng)
=> tam giác AHK có 2 cạnh bằng nhau
b
Vì AH = AK (cmt)
=> ΔAHK cân tại A.
=> ^AHK = (180° - ^A) : 2 (1)
Lại có:
ΔAIB = ΔAIC (cmt)
=> AB = AC
=> ΔABC cân tại A
=> ^ABC = (180° - ^A) : 2 (2)
Từ (1) và (2)
=> ^AHK = ^ABC
Mà 2 góc đồng vị
=> HK // BC
=> ĐCPCM
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(AHB\) và \(AHC\) có:
\(AB=AC\left(gt\right)\)
\(HB=HC\) (vì H là trung điểm của \(BC\))
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\left(c-c-c\right).\)
b) Xét 2 \(\Delta\) \(ABH\) và \(DCH\) có:
\(AH=DH\left(gt\right)\)
\(\widehat{AHB}=\widehat{DHC}\) (vì 2 góc đối đỉnh)
\(BH=CH\) (vì H là trung điểm của \(BC\))
=> \(\Delta ABH=\Delta DCH\left(c-g-c\right)\)
=> \(\widehat{ABH}=\widehat{DCH}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD.\)
Chúc bạn học tốt!
Hướng dẫn:
Vì M thuộc đường trung trực của AB
=> MA = MB
N thuộc đường trung trực của AB
=> NA = NB
Do đó ∆AMN = ∆BMN (c.c.c)
47. Cho hai điểm M, N nằm trên đường trung trực của đoạn thẳng AB. Chứng minh
∆AMN = ∆BMN.
Hướng dẫn:
Vì M thuộc đường trung trực của AB
=> MA = MB
N thuộc đường trung trực của AB
=> NA = NB
Do đó ∆AMN = ∆BMN (c.c.c)
Vì M thuộc đường trung trực của AB
=> MA = MB
N thuộc đường trung trực của AB
=> NA = NB
Do đó ∆AMN = ∆BMN (c.c.c)
M A B N
Vì M, N thuộc đường trung trực của AB nên MA = MB; NA = NB
Xét tam giác AMN và tam giác BMN có:
MA = MB
NA = NB
MN chung
=> Tam giác AMN = Tam giác BMN (c.c.c)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Vì H nằm trên đường trung trực của AB
nên HA=HB
Vì K nằm trên đường trung trực của AB
nên KA=KB
Xét ΔAHK và ΔBHK có
HA=HB
KA=KB
HK chung
Do đó ΔAHK=ΔBHK