K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Cách dựng:

- Dựng hai tia chung gốc ox và Oy

phân biệt không đối nhau.

- Trên Ox dựng đoạn OM = AB = 3cm

và dựng đoạn MN = CD = 5cm sao cho M nằm giữa O và N

- Trên tia Oy dựng đoạn OP = EF = 2cm.

- Dựng đường thẳng PM.

- Từ N dựng đường thẳng song song với PM cắt tia Oy tại Q.

Đoạn thẳng PQ = a cần dựng..

* Chứng minh:

Theo cách dựng, ta có: PM // NQ.

Trong ΔONQ ta có: PM // NQ

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

5 tháng 2 2020

Bài 16:

Nếu giống ở bài thì phải là \(AB=3cm,CD=5cm\) nhé.

Cách dựng:

- Dựng hai tia chung gốc \(Ox\)\(Oy\) phân biệt không đối nhau.

- Trên \(Ox\) dựng đoạn \(OM=AB=3cm\) và dựng đoạn \(MN=CD=5cm\) sao cho M nằm giữa ON.

- Trên tia \(Oy\) dựng đoạn \(OP=EF=2cm.\)

- Dựng đường thẳng \(PM.\)

- Từ N dựng đường thẳng song song với \(PM\) cắt tia \(Oy\) tại Q. Ta được đoạn thẳng \(PQ=a\) cần dựng.

Chứng minh:

+ Xét \(\Delta ONQ\) có:

\(PM\) // \(NQ\) (do cách dựng).

=> \(\frac{OM}{MN}=\frac{OP}{PQ}\) (định lí Ta - lét).

=> \(\frac{AB}{CD}=\frac{EF}{a}\)

=> \(\frac{3}{5}=\frac{2}{a}\)

=> \(a=2:\frac{3}{5}\)

=> \(a=\frac{10}{3}\left(cm\right).\)

Vậy \(a=\frac{10}{3}\left(cm\right).\)

Chúc bạn học tốt!

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>EF=AH

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

7 tháng 1 2018