Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
E B C M D A N
a. Xét ΔACE và ΔDCB có:
AC=DC
CE=CB
góc ACE=góc DCB (=60+gócDCE)
Suy ra : ΔACE và ΔDCB (c.g.c)
=> góc AEC=góc DBC
=> AE=DB
mà M,N lần lượt là trung điểm AE=DB
=> EM=BN
Xét ΔCME và ΔCNB có:
CE=CB
EM=BN
góc CEM=góc CBN
Suy ra : ΔCME = ΔCNB (c.g.c)
=> CM=CN ( 2 cạnh tương ứng )
=> tam giác CMN cân ở C
-> góc MCE=góc NCB
mà góc ECN+góc NCB=góc ECB=600
=> góc MCE+góc ECN=600
<=> góc MCN=600
mà tam giác MCN cân ở C
=> tam giác MNC đều (đpcm)
a, ta cs: tam giác AOB cs: ^A=^B=60 độ
tứ giác OCMD là hbh-> OA=OB=> tam giác OAB cân
=> tam giác đều
b, ta cs: tứ giác OCMD cs: ^O=^CMD= 60 độ và ^OCM=^ODM=120 độ
=> hbh
=> OD=MC, OC=MD