Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)
A. √3+1/2 B. √3−1/2 C. 1−√3/2 D. 0
\(\int\limits^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}\dfrac{dx}{sin^2x.cos^2x}=\int\limits^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}\dfrac{2d\left(2x\right)}{sin^22x}=-2cot2x|^{\dfrac{\pi}{4}}_{\dfrac{\pi}{8}}=...\)
\(\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{cos2xdx}{sin^2x.cos^2x}=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\dfrac{cos^2x-sin^2x}{sin^2x.cos^2x}dx=\int\limits^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\left(\dfrac{1}{sin^2x}-\dfrac{1}{cos^2x}\right)dx=\left(-cotx-tanx\right)|^{\dfrac{\pi}{3}}_{\dfrac{\pi}{6}}\)
\(\int\limits^{\dfrac{\pi}{3}}_0\dfrac{cos3x}{cosx}dx=\int\limits^{\dfrac{\pi}{3}}_0\dfrac{4cos^3x-3cosx}{cosx}dx=\int\limits^{\dfrac{\pi}{3}}_0\left(4cos^2x-3\right)dx\)
\(=\int\limits^{\dfrac{\pi}{3}}_0\left(2cos2x-1\right)dx=\left(sin2x-x\right)|^{\dfrac{\pi}{3}}_0=...\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
Tính \(I=\int_0^{\dfrac{\pi}{2}}\dfrac{cos^{2017}x}{sin^{2017}x+cos^{2017}}dx\left(1\right)\)
Đặt \(t=cosx\Rightarrow sinx=\sqrt{1-cos^2x}\)
\(\Rightarrow dt=-sinx.dx\)
\(\Rightarrow I=\int_0^1\dfrac{t^{2017}.}{\sqrt{1-t^2}.\left(\left(\sqrt{1-t^2}\right)^{2017}+t^{2017}\right)}dt\)
Đặt: \(t=siny\Rightarrow\sqrt{1-t^2}=cosy\)
\(\Rightarrow dt=cosy.dy\)
\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y.cosy}{cosy\left(cos^{2017}y+sin^{2017}y\right)}dy=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}y}{\left(cos^{2017}y+sin^{2017}y\right)}\)
\(\Rightarrow I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x}{\left(cos^{2017}x+sin^{2017}x\right)}\left(2\right)\)
Cộng (1) và (2) ta được
\(2I=\int_0^{\dfrac{\pi}{2}}\dfrac{sin^{2017}x+cos^{2017}x}{sin^{2017}x+cos^{2017}x}dx=\int_0^{\dfrac{\pi}{2}}1dx\)
\(=x|^{\dfrac{\pi}{2}}_0=\dfrac{\pi}{2}\)
\(\Rightarrow I=\dfrac{\pi}{4}\)
Thế lại bài toán ta được
\(\dfrac{\pi}{4}+t^2-6t+9-\dfrac{\pi}{4}=0\)
\(\Leftrightarrow t^2-6t+9=0\)
\(\Leftrightarrow t=3\)
Chọn đáp án C
mỗi trắc nghiệm thoy mà lm dài ntn s @@
chắc lên đó khó lắm ag
Ok bat ong doi lau roi
\(\int\dfrac{1+\sin x}{1+\cos x}e^xdx=\int\dfrac{e^xdx}{1+\cos x}+\int\dfrac{e^x\sin x}{1+\cos x}dx\)
\(I_1=\int\dfrac{e^xdx}{1+\cos x}\)
\(I_2=\int\dfrac{e^x\sin x}{1+\cos x}dx\)
\(\left\{{}\begin{matrix}u=\dfrac{\sin x}{1+\cos x}\\dv=e^xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{\cos x\left(1+\cos x\right)+\sin^2x}{\left(1+\cos x\right)^2}dx=\dfrac{dx}{1+\cos x}\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I_2=\dfrac{e^x.\sin x}{1+\cos x}-\int\dfrac{e^xdx}{1+\cos x}=\dfrac{e^x\sin x}{1+\cos x}-I_1\)
\(\Rightarrow I=\dfrac{e^x\sin x}{1+\cos x}\)
P/s: Done, ông thay cận vô nhé :)
khong biet
chịu lun