Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
a) tam giác ACB ~ tam giác ADB(g-g)
=>AB^2=AC*AD
còn AB^2=AH*AO thì theo hệ thức lượng
b) tam giác EOH=tam giác BOH( cạnh huyền cạnh góc vg)
=>EH=HB
=>EA=AB
=>tam giác AEO= tam giác ABO
=>OEA=ABO=90
( Mình nhắc trước có một số chỗ mình viết tắt ^^ vì bài dài đánh chữ nhiều cũng mỏi lắm, với cả chỗ viết tắt cũng cơ bản í mà :)) ko hiểu chỗ nào thì hỏi nha )
a) Vì \(\hept{\begin{cases}AB\perp OB\\OI\perp DE\end{cases}\Rightarrow\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{AIO}=90^0\end{cases}}}\)
Xét tứ giác ABIO có: \(\widehat{ABO}=\widehat{AIO}\left(=90^0\right)\)
Mà 2 đỉnh B,I cùng nhìn cạnh OA dưới 1 góc vuông
\(\Rightarrow ABIO\)nội tiếp ( dhnb )
+) Ta có: \(\hept{\begin{cases}\widehat{ABH}=\frac{1}{2}sđ\widebat{BC}\\\widehat{BOA}=\frac{1}{2}\widehat{BOC}=\frac{1}{2}sđ\widehat{BC}\end{cases}}\)
\(\Rightarrow\widehat{ABH}=\widehat{BOA}\)
Xét tam giác ABH và tam giác AOB có:
\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{ABH}=\widehat{BOA}\left(cmt\right)\end{cases}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)}\)
\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\)
\(\Rightarrow AB^2=AH.AO\left(1\right)\)
b) Xét tam giác ABD và tam giác AEB có:
\(\hept{\begin{cases}\widehat{BAE}chung\\\widehat{ABD}=\widehat{AEB}\left(=\frac{1}{2}sđ\widebat{BD}\right)\end{cases}\Rightarrow\Delta ABD~\Delta AEB\left(g-g\right)}\)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\)
\(\Rightarrow AB^2=AD.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AH.AO=AD.AE\)
\(\Rightarrow\frac{AH}{AD}=\frac{AE}{AO}\)
Xét tam giác ADH và tam giác AOE có:
\(\hept{\begin{cases}\widehat{OAE}chung\\\frac{AH}{AD}=\frac{AE}{AO}\end{cases}}\Rightarrow\Delta ADH~\Delta AOE\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHD}=\widehat{AEO}\)
Xét tứ giác DHOE có \(\widehat{AHD}=\widehat{AEO}\)
\(\Rightarrow DHOE\)nội tiếp ( dhnb )
=> D,H,O,E thuộc một đường tròn (3)
Ta có: OK là đường trung trực của DE
Xét tam giác KDO và tam giác KEO có:
\(\hept{\begin{cases}KD=KE\\OD=OE\\OKchung\end{cases}\Rightarrow\Delta KDO=\Delta KEO\left(c-c-c\right)}\)
\(\Rightarrow\widehat{KDO}=\widehat{KEO}=90^0\)
Xét tứ giác KDOE có: \(\widehat{KDO}=\widehat{KEO}=90^0\)
Mà 2 góc này ở vị trí đối nhau của tứ giác KDOE
\(\Rightarrow KDOE\)nội tiếp
=> K,D,O,E thuộc đường tròn đường kính OK
Từ (3) và (4) => D,K,E,O,H thuộc đường tròn đường kính OK
c) Vì K,,O,H thuộc đường tròn đường kính OK
\(\Rightarrow\widehat{KHO}=90^0\)
\(\Rightarrow KH\perp HO\)
Mà \(BC\perp HO\)
\(\Rightarrow K,B,C\)thẳng hàng