Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ACB\) và \(\Delta EDF\) có:
\(\begin{array}{l}AC = ED\\AB = EF\\CB = DF\end{array}\)
\(\Rightarrow \Delta ACB = \Delta EDF\)(c.c.c)
Xét \(\Delta CAB\) và \(\Delta DEF\) có:
\(\begin{array}{l}CA = DE\\AB = EF\\CB = DF\end{array}\)
\(\Rightarrow \Delta CAB = \Delta DEF\)(c.c.c)
Vậy khẳng định (2) và (4) đúng.
Chú ý: Khi \(\Delta ABC = \Delta DEF\), ta cũng có thể viết \(\Delta BAC = \Delta EDF\) hay \(\Delta CBA = \Delta FED\);....
Bổ sung thêm AB=DE
Thì ∆ABC=∆DEF (c.g.c)
* Bổ sung thêm ˆCC^=ˆFF^
Thì ∆ABC=∆DEF(g.c.g)
* Bổ sung thêm BC=EF
thì ∆ABC=∆DEF (cạnh huyền- cạnh góc vuông)
Giải:
Xem hình vẽ
* Bổ sung thêm AB=DE
Thì ∆ABC=∆DEF (c.g.c)
* Bổ sung thêm ˆCC^=ˆFF^
Thì ∆ABC=∆DEF(g.c.g)
* Bổ sung thêm BC=EF
thì ∆ABC=∆DEF (cạnh huyền- cạnh góc vuông)
\(\Delta ABC=\Delta DEF\Rightarrow\widehat{A}=\widehat{D},\widehat{B}=\widehat{E},\widehat{C}=\widehat{F},AB=DE,AC=DF,BC=EF\)
Ta có: ∆ABC = ∆DEF
Suy ra: AB = DE; AC = DF; BC = EF
∠A = ∠D ; ∠B = ∠E ; ∠C = ∠F
a) Xét hai tam giác ABD và ACD có:
AB=AC
AD chung
BD=DC
=>\(\Delta \)ABD = \(\Delta \)ACD (c.c.c)
b) Do \(\Delta \)ABD = \(\Delta \)ACD nên \(\widehat B = \widehat C\)( 2 góc tương ứng)
a: ΔABC và ΔEFD
Để ΔABC=ΔEFD theo trường hợp c-g-c thì BC=FD
b: ΔABC=ΔEFD
nên AB=EF=5cm; AC=ED=6cm; BC=FD=6cm
=>\(C_{ABC}=C_{EFD}=5+6+6=17\left(cm\right)\)
Giải: a) Bổ sung thêm \(\widehat{BAC}\)=\(\widehat{DAC}\).
b) Bổ sung thêm MA=ME.
c) Bổ sung thêm AC=BD.
chưa hiểu đề lắm bạn ơi
chưa sủa lại đề mà bạn