\(\Delta\)ABC=\(\Delta\)HIK trong đó AB=2cm ,

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Bài này là dạng dễ đó

Ta có: \(\frac{MA'}{AA'}=\frac{S_{MA'B}}{S_{AA'B}}=\frac{S_{MA'C}}{S_{AA'C}}=\frac{S_{MA'B}+S_{MA'C}}{S_{AA'B}+S_{AA'C}}\)\(=\frac{S_{MBC}}{S_{ABC}}\)

Tương tự: \(\frac{MB'}{BB'}=\frac{S_{AMC}}{S_{ABC}}\);\(\frac{MC'}{CC'}=\frac{S_{AMB}}{S_{ABC}}\)

Suy ra: \(\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=\frac{S_{MBC}+S_{AMC}+S_{AMB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

⇒ điều phải chứng minh

31 tháng 7 2019
https://i.imgur.com/2ck4Mv2.jpg
1 tháng 8 2019

\(\text{Theo tính chất trọng tâm }:\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\\ \Rightarrow\frac{1}{2}\left(\overrightarrow{GA}+\overrightarrow{GB}\right)+\frac{1}{2}\left(\overrightarrow{GA}+\overrightarrow{GC}\right)+\frac{1}{2}\left(\overrightarrow{GB}+\overrightarrow{GC}\right)=0\\ \Rightarrow\frac{1}{2}\cdot2\overrightarrow{GC'}+\frac{1}{2}\cdot2\overrightarrow{GB'}+\frac{1}{2}\cdot2\overrightarrow{GA'}=0\\ \Rightarrow\overrightarrow{GC'}+\overrightarrow{GB'}+\overrightarrow{GA'}=0\)

NV
19 tháng 9 2019

Do M là trung điểm BC \(\Rightarrow\overrightarrow{BM}+\overrightarrow{CM}=\overrightarrow{0}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{0}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{BM}+\overrightarrow{CM}\)

\(=\left(\overrightarrow{AB}+\overrightarrow{BM}\right)+\left(\overrightarrow{AC}+\overrightarrow{CM}\right)=\overrightarrow{AM}+\overrightarrow{AM}\) (đpcm)

22 tháng 12 2019

\(\overrightarrow{AB}\left(1;-3\right),\overrightarrow{AC}\left(6;2\right),\overrightarrow{BC}\left(5;5\right)\)

\(\left|\overrightarrow{AB}\right|=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

tương tự \(\left|\overrightarrow{AC}\right|=2\sqrt{10},\left|\overrightarrow{BC}\right|=5\sqrt{2}\)

\(AB^2+AC^2=\left(\sqrt{10}\right)^2+\left(2\sqrt{10}\right)^2=50=BC^2\)

\(\Rightarrow\Delta ABC\) là tam giác vuông

\(P_{\Delta ABC}=2\sqrt{10}+\sqrt{10}+5\sqrt{2}=3\sqrt{10}+5\sqrt{2}\)

\(S_{\Delta ABC}=\frac{1}{2}.2\sqrt{10}.\sqrt{10}=10\)

14 tháng 12 2018

bài 2)

xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)

\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )

\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )

=> đpcm

Câu 4:

\(\overrightarrow{AB}=\left(-6;-2\right)\)

\(\overrightarrow{AH}=\left(m+1;m+1\right)\)

Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)

=>1/-6=1/-2(loại)