Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ΔABD=ΔEBDΔABD=ΔEBD
b) AH//DE;ΔADIAH//DE;ΔADI cân
c) AE là tia phân giác của ˆHACHAC^
d) DC = 2AI
Giải thích các bước giải:
a) BD là phân giác của ˆABCABC^
⇒ˆABD=ˆEBD⇒ABD^=EBD^
Xét ΔABDΔABD và ΔEBDΔEBD có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD chung
ˆABD=ˆEBDABD^=EBD^ (cmt)
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (cạnh huyền - góc nhọn) (*)
b) AH⊥BC;DE⊥BCAH⊥BC;DE⊥BC
⇒AH//ED⇒AH//ED
⇒ˆAID=ˆIDE⇒AID^=IDE^
Từ (*)⇒ˆADI=ˆIDE⇒ADI^=IDE^
⇒ˆAID=ˆADI⇒AID^=ADI^
⇒ΔAID⇒ΔAID cân tại A
c) Từ (*)⇒AB=BE⇒AB=BE (hai cạnh tương ứng)
⇒ΔABE⇒ΔABE cân tại B
AE∩BD=KAE∩BD=K
⇒BK⇒BK vừa là phân giác vừa là đường cao
⇒BK⊥AE⇒BK⊥AE
Xét ΔAIDΔAID cân tại A có AK⊥IDAK⊥ID
⇒AK⇒AK vừa là đường cao vừa là đường phân giác
⇒AE⇒AE là tia phân giác ˆHACHAC^
d) ΔAIDΔAID cân tại A
⇒AI=AD⇒AI=AD
BD là phân giác của ˆABCABC^
⇒ABAC=ADDC=AIDC⇒ABAC=ADDC=AIDC
Để DC=2AI thì AIDC=ABAC=12⇒AC=2ABAIDC=ABAC=12⇒AC=2AB
a) Xét \(\Delta BDK\) và \(\Delta BAD\) có:
BD (chung)
\(\widehat{KBD}=\widehat{ABD}\) (BD là tia phân giác \(\widehat{B}\) )
\(\widehat{DKB}=\widehat{DAB}=90^0\)
Do đó: \(\Delta BDK=\Delta BAD\left(ch-gn\right)\)
=> KB = AB (hai cạnh tương ứng)
=> \(\Delta KAB\) cân tại B
=> B \(\in\) đường trung trực của đoạn thẳng KA (1)
=> DK = DA (hai cạnh tương ứng)
=> \(\Delta DKA\) cân tại D
=> D \(\in\) đường trung trực của đoạn thẳng KA (2)
(1), (2) => BD là đường trung trực của đoạn thẳng KA
=> BD \(\perp\) AK
b) Vì \(\widehat{DKH}=\widehat{AHB}=90^0\)
=> DK // AH (đồng vị)
=> \(\widehat{DKA}=\widehat{KAH}\) (sole trong) (1)
Vì \(\Delta DKA\) cân
=> \(\widehat{DAK}=\widehat{DKA}\) (2)
(1); (2) => \(\widehat{DAK}=\widehat{KAH}\)
=> AK là tia phân giác \(\widehat{HAC}\)
c) Vì \(\Delta BDK=\Delta BAD\) (cmt)
=> \(\widehat{KDB}=\widehat{ADB}\) (hai góc tương ứng)
Xét \(\Delta DAI\) và \(\Delta DKI\) có:
DI (chung)
\(\widehat{ADI}=\widehat{KDI}\) (cmt)
DK = DA (cmt)
Do đó: \(\Delta DAI=\Delta DKI\) (c-g-c)
=> \(\widehat{DAI}=\widehat{DKI}\) (hai góc tương ứng)
mà \(\widehat{DAK}=\widehat{DKA}\)
Do đó: \(\widehat{KAI}=\widehat{AKI}\)
mà \(\widehat{DAK}=\widehat{KAI}\)
=> \(\widehat{DAK}=\widehat{AKI}\)
=> IK // AC
a) Xét ΔBAE vuông tại A và ΔBDE vuông tại D có: BA = BD (gt); BE cạnh chung
Vậy: ΔBAE=ΔBDE (ch, cgv)
b), c) Gọi I là giao điểm của BE và AD.
Xét ΔABI và ΔDBI có: BA = BD (gt)
\(\widehat{ABI}\) = \(\widehat{DBI}\) (2 góc tương ứng)
BI cạnh chung
Vậy ΔABI và ΔDBI (c.g.c)
\(\Rightarrow\) \(\widehat{BAD}\) = \(\widehat{BDA}\) (2 góc tương ứng)
Ta có: \(\widehat{BAC} = 90\)\(^o\) và \(\widehat{AHD} = 90\)\(^o\),
mà \(\widehat{BAD}\)= \(\widehat{BDA}\) \(\Rightarrow\)\(\widehat{HAD} = \widehat{DAK}\)
Vậy AD là tia phân giác \(\widehat{HAC}\)
Xét ΔHAD vuông tại H và ΔKAD vuông tại K có:
\(\widehat{HAD} = \widehat{KAD}\) (cmt)
AD cạnh chung
Vậy: ΔHAD = ΔKAD (ch, gn)
\(\Rightarrow\) AH = AK (2 cạnh tương ứng)
d) F đâu ra
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)
Đỗ Hương GiangNguyễn Lê Hoàng ViệtNguyễn Huy ThắngNguyễn Huy Tú
Trần Việt LinhVõ Đông Anh TuấnPhương An
Câu 3:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
EB chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó;ΔABE=ΔHBE
b: Ta có: BA=BH
EA=EH
Do đó: BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra:EK=EC
d: Ta có: AE=EH
mà EH<EC
nên AE<EC
Bạn tự vẽ hình giùm mình nhé!
a, Xét tam giác BHA và tam giác BHE có:
Góc BHA = Góc BHE = 90 độ ( gt )
BH chung
Góc ABH = Góc EBH ( gt )
=> Tam giác BHA = tam giác BHE ( góc nhọn - cạnh góc vuông )
b, Tam giác BHA = tam giác BHE ( cmt)
=> AB = EB ( cạnh tương ứng )
Xét tam giác BAD và tam giác BED có
BA = BE ( cmt )
Góc ABD = Góc EBD ( gt )
BD chung
=> Tam giác BAD = tam giác BED ( c.g.c )
=> Góc BED = Góc BAD = 90 độ
=> ED vuông góc với BC
c, Tam giác BAD = tam giác BED ( cmt )
=> AD = DE ( cạnh tương ứng ) (1)
Vì DE vuông góc với BC (cmt) nên tam giác DEC vuông tại E
=> DE < DC ( cạnh góc vuông < cạnh huyền ) (2)
Từ (1) và (2) => AD < DC
c, Có AK vuông góc với BC ( gt )
DE vuông góc với BC (cmt)
=> AK // DE
=> Góc KAE = Góc DEA ( so le trong ) (3)
Tam giác BAD = tam giác BED ( cmt )
=> AD = DE
=> Tam giác DAE cân tại D
=> góc DEA = góc DAE (4)
Từ (3) và (4) => Góc KAE = góc DAE
=> AE là phân giác của góc KAC
Bạn có thể kiểm tra lại đề được không ?! Ý a tam giác BAH và BED không bằng nhau bạn ạ