\(\Delta\)ABC vuông tại A, có góc B = 35*.Trên nửa mặt phẳng có bờ là AC không chứa...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2022

a: góc ACB=90-35=55 độ

b: Xét ΔABC vuông tại A và ΔCDA vuông tại C có

AC chung

AB=CD

Do đó: ΔABC=ΔCDA

Xét tứ giác ABCD có

AB//CD

AB=CD

Do đó; ABCD là hình bình hành

=>AD//BC và AD=BC

c: Xét ΔAHB vuông tại H và ΔCKD vuông tại K có

AB=CD

góc ABH=góc CDK

Do đo: ΔAHB=ΔCKD

=>BH=DK

a: \(\widehat{ACB}=90^0-55^0=35^0\)

b: Xét ΔCAB vuông tại A và ΔACD vuông tại C có

CA chung

AB=CD
Do đó: ΔCAB=ΔACD

Xét tứ giác ABCD có

AB//CD

AB=CD
Do đó:ABCD là hình bình hành

Suy ra: AD//BC

c: Xét ΔBHA vuông tại H và ΔDKC vuông tại K có

BA=DC

\(\widehat{B}=\widehat{D}\)

Do đó: ΔBHA=ΔDKC

Suy ra: BH=DK

24 tháng 1 2018

Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

15 tháng 2 2019

a, xét tam giác AHB và tam giác DBH có : HB chung

góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)

AH = BD (gt)

=> tam giác AHB = tam giác DBH (2cgv)

b, tam giác AHB = tam giác DBH (câu a)

=>  góc DHB = góc HBA (đn) mà 2 góc này so le trong

=> HD // AB (đl_

c, câu này dễ tự tính được

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
5 tháng 5 2018

Hình ảnh bạn tự vẽ nhé!

a/ Tam giác ADI vuông tại I và tam giác ADI vuông tại I có:

ID = IH ( vì I là trung điểm của HD)

IA là cạnh chung

=> \(\Delta ADI=\Delta AHI\)( hai cạnh góc vuông)

b/ Tam giác ADB và tam giác AHB có:
AD = AH ( tam giác ADI = tam giác AHI)

\(\widehat{DAI}\) = \(\widehat{HAI}\)( vì tam giác ADI = tam giác AHI)

BA là cạnh chung.

=> Tam giác ADB = tam giác AHB ( c.g.c)

=> D = H = 90 độ

=> AD\(\perp\)BD tại D