Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có M là trung điểm BC (đề bài)
=> AM là đường trung tuyến
mà AM = BC/2 (trong tam giác VUÔNG đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)
=> Tam giác ABC vuông tại A
=> Góc A = 90 độ
Câu b,c đang nghĩ nhé
A B C D M
a)Xét ΔAMB và ΔDMC có:
AD=DM(gt)
\(\widehat{AMB}=\widehat{MDC}\left(đđ\right)\)
BM=MC(gt)
=> ΔAMB=ΔDMC (c.g.c)
b) Vì: ΔAMB=ΔDMC(cmt)
=> \(\widehat{ABM}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong
=> AB//DC
Mà: \(AB\perp AC\left(gt\right)\)
=> \(DC\perp AC\)
c)Vì: ΔABC vuông tại A(gt)
Mà AM là đường trung tuyến ứng vs cạnh BC
=> \(AM=\frac{1}{2}BC\)
a) Xét ΔABM và ΔDCM ta có:
AM = DM (GT)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
BM = CM (GT)
=> ΔABM = ΔDCM (c - g - c)
b) Có: ΔABM = ΔDCM (câu a)
=> \(\widehat{ABM}=\widehat{MCD}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc so le trong
=> AB // CD
c) Có: AB // CD (câu b)
=> \(\widehat{BAC}+\widehat{DCA}=180^0\) (2 góc trong cùng phía)
=> \(\widehat{DCA}=180^0-\widehat{BAC}=180^0-90^0\)
=> \(\widehat{DCA}=90^0\)
d) Có: ΔABM = ΔDCM (câu a)
=> AB = CD (2 cạnh tương ứng)
Xét ΔABC và ΔCDA ta có:
AB = CD (cmt)
\(\widehat{BAC}=\widehat{DCA}\left(=90^0\right)\)
AC: cạnh chung
=> ΔABC = ΔCDA (c - g - c)
=> BC = AD (2 cạnh tương ứng)
e) Có: ΔABC = ΔCDA (câu d)
=> BC = AD (2 cạnh tương ứng)
Mà: \(AM=\frac{1}{2}AD\) (GT)
=> \(AM=\frac{1}{2}BC\)
Bài 1:
a) Xét tam giác ABM và tam giác ACM
có: AB = AC (gt)
góc BAM = góc CAM (gt)
AM là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Xét tam giác ABC
có: AB = AC
=> tam giác ABC cân tại A ( định lí tam giác cân)
mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)
=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)
Bài 2:
a) Xét tam giác ABD và tam giác EBD
có: AB = EB (gt)
góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> góc BAD = góc BED ( 2 góc tương ứng)
mà góc BAD = 90 độ ( tam giác ABC vuông tại A)
=> góc BED = 90 độ
Gọi D là điểm đối xứng với A qua M
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hìnhbình hành
mà góc BAC=90 độ
nên ABDC là hình chữ nhật
=>AM=1/2BC