\(\widehat{A}=90^0\). M là trung điểm của BC

C/m: AM=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi D là điểm đối xứng với A qua M

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hìnhbình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

=>AM=1/2BC

27 tháng 2 2020

a, tam giác ABC cân tại A (gt)

=> góc B = (180 - góc A) : 2

góc A = 50 (gt)

=> góc B = (180 - 50) : 2 

=> góc B = 65

b, xét tam giác AMB và tam giác AMC có : AB = AC do tam giác ABC cân tại A (gt)

góc ABC = góc ACB do tam giác ABC cân tại A (gT)

BM = MC do M là trđ của BC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, tam  giác AMB = tam giác AMC (Câu b)

=> góc MAB = góc MAC (đn) mà AM nằm giữa AB và AC 

=> AM là pg của góc BAC (đn)

27 tháng 2 2020

A B C M 1 1 2 2

A)VÌ \(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT TAM GIÁC ABC

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(đ/l\right)\)

THAY\(50^o+\widehat{B}+\widehat{C}=180^o\)

                        \(\widehat{B}+\widehat{C}=130^o\)

\(\widehat{B}=\widehat{C}\)

THAY \(\widehat{C}+\widehat{C}=130^o\)

      \(2\widehat{C}=130^o\)

\(\widehat{C}=130^o:2=65^o\)     

\(\Rightarrow\widehat{B}=\widehat{C}=65^o\)

B)XÉT\(\Delta BAM\)\(\Delta CAM\)

  \(BA=CA\left(GT\right)\)

    \(\widehat{B}=\widehat{C}\left(GT\right)\)

\(BM=CM\left(GT\right)\)

\(\Rightarrow\Delta BAM=\Delta CAM\left(C-G-C\right)\)

\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)HAI GÓC TƯƠNG ỨNG

MÀ \(\widehat{M_1}+\widehat{M_2}=180^o\left(KB\right)\)

THAY\(\widehat{M_2}+\widehat{M_2}=180^o\)

\(2\widehat{M_2}=180^o\)

\(\widehat{M_2}=180^o:2=90^o\)

VẬY \(AM\perp BC\left(đpcm\right)\)

c) \(AM\perp BC\left(cmt\right)\)

=> AM LÀ ĐƯƠNG CAO CỦA TAM GIÁC ABC

TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG PHÁP TUYẾN,PHÂN GIÁC,TRUNG TUYẾN

=> AM LÀ PHÂN GIÁC CỦA\(\widehat{BAC}\)

27 tháng 3 2018

Dựa theo quan giữa góc và cạnh đối diện, bạn tự giải nha !

28 tháng 3 2018

Gửi le thi hong van mấy ảnh này cho đỡ căng thẳng nha !!! Mình tự làm đấybanh

Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7Violympic toán 7

15 tháng 12 2016

A B C D M

a)Xét ΔAMB và ΔDMC có:

AD=DM(gt)

\(\widehat{AMB}=\widehat{MDC}\left(đđ\right)\)

BM=MC(gt)

=> ΔAMB=ΔDMC (c.g.c)

b) Vì: ΔAMB=ΔDMC(cmt)

=> \(\widehat{ABM}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong

=> AB//DC

Mà: \(AB\perp AC\left(gt\right)\)

=> \(DC\perp AC\)

c)Vì: ΔABC vuông tại A(gt)

Mà AM là đường trung tuyến ứng vs cạnh BC

=> \(AM=\frac{1}{2}BC\)

24 tháng 10 2017

B1

Áp dụng định lý Pytago vào các tam giác vuông ta được:

PC^2=AP^2+AC^2

BN^2=AB^2+AN^2

BC^2=AB^2+AC^2

Theo tính chất tam giác vuông ta được:

AM=\(\dfrac{1}{2}\)BC=>AM^2=\(\dfrac{1}{4}\)BC^2

Từ trên =>AM^2+BN^2+CP^2=

\(\dfrac{1}{4}\)BC^2+AB^2+\(\dfrac{\left(AC\right)^2}{4}\)+AC^2+\(\dfrac{\left(AB\right)^2}{4}\)=\(\dfrac{2\left(BC\right)^2}{4}\)+BC^2=\(\dfrac{3}{2}\)BC^2(đpcm)

\(\dfrac{1}{4}\)

A B C P M N

24 tháng 10 2017
  • ẦN MINH HOÀNG2GP
  • Izumiki AkikoKien NguTrần Thân Đồng
  • QuNguTrần Việt Linh
  • yễn HoànHuỳnh Thoại
  • g Đình Bảo
  • Nguyễn Hoàng Đình Bảo
  • Phương HÀ
  • Thanh Hằng
  • ốc Lộc
  • yen
9 tháng 4 2020

Cho tam giác vuông ABC có góc A bằng 90 độ. M là trung điểm của BC ...

a) Xét ΔABM và ΔDCM ta có:

AM = DM (GT)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

BM = CM (GT)

=> ΔABM = ΔDCM (c - g - c)

b) Có: ΔABM = ΔDCM (câu a)

=> \(\widehat{ABM}=\widehat{MCD}\) (2 góc tương ứng)

Mà 2 góc này lại là 2 góc so le trong

=> AB // CD
c) Có: AB // CD (câu b)

=> \(\widehat{BAC}+\widehat{DCA}=180^0\) (2 góc trong cùng phía)

=> \(\widehat{DCA}=180^0-\widehat{BAC}=180^0-90^0\)

=> \(\widehat{DCA}=90^0\)

d) Có: ΔABM = ΔDCM (câu a)

=> AB = CD (2 cạnh tương ứng)

Xét ΔABC và ΔCDA ta có:

AB = CD (cmt)

\(\widehat{BAC}=\widehat{DCA}\left(=90^0\right)\)

AC: cạnh chung

=> ΔABC = ΔCDA (c - g - c)

=> BC = AD (2 cạnh tương ứng)

e) Có: ΔABC = ΔCDA (câu d)

=> BC = AD (2 cạnh tương ứng)

Mà: \(AM=\frac{1}{2}AD\) (GT)

=> \(AM=\frac{1}{2}BC\)

5 tháng 8 2018

Bài 1:

a) Xét tam giác ABM và tam giác ACM

có: AB = AC (gt)

góc BAM = góc CAM (gt)

AM là cạnh chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)

b) Xét tam giác ABC

có: AB = AC

=> tam giác ABC cân tại A ( định lí tam giác cân)

mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)

=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)

5 tháng 8 2018

Bài 2:

a) Xét tam giác ABD và tam giác EBD

có: AB = EB (gt)

góc ABD = góc EBD (gt)

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> AD = ED ( 2 cạnh tương ứng)

c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)

=> góc BAD = góc BED ( 2 góc tương ứng)

mà góc BAD = 90 độ ( tam giác ABC vuông tại A)

=> góc BED = 90 độ

Bài 1:

Xét ΔBAC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)

=>AB/BC=1/2

hay AB=1/2BC

Câu 4: 

Ta có: AM=1/2BC

nên AM=BM=CM

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{B}\)

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{C}\)

Xét ΔABC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)

=>\(2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)

=>\(\widehat{BAC}=90^0\)