Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TORO ZANE chắc là thầy mk nhầm ; mk cm được :
nhưng phải là 2.(AB^2+AC^2+BC^2)
a)Xét tam giác APM có: AM < AP + PM (tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh còn lại)
Xét tam giác ANM có: AM < AN + NM (tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh còn lại)
=> 2AM < AP + PM + AN +NM (cộng vế với vế) (1)
Lại có: AP = MN (t/c đường trung bình của tam giác ABC) (2)
PM = AN (t/c đường trung bình của tam giác ABC) (3)
Từ (1),(2),(3) => 2AM < 2AP + 2AN
<=> 2AM < AB + AC (Do CP và BN là đường trung tuyến của tam giác ABC)
<=> AM < 1/2 (AB+AC) (chia cả hai vế cho 2)
b)
* CM tương tự:
-BN < 1/2 (AB+AC)
-CP < 1/2 (AC+CB)
AM < 1/2 (AB+AC)
=> AM + BN + CP < 1/2 (AB+AC+AB+BC+AC+BC)
<=>AM + BN + CP < AB+AC+BC (3)
* Có: BG+GC > BC (Xét tam giác BGC)
- GC+AG > AC (Xét tam giác CGA)
- AG+BG > AB (Xét tam giác AGB)
=> 2GB+2GC+2GA > AB+AC+BC
<=>2.2/3BN + 2.2/3PC + 2.2/3AM > AB+AC+BC (t/c đường trung tuyến trong tam giác ABC)
<=>4/3 (BN + PC + AM) > AB+AC+BC
<=>BN+PC+AM > 3/4( AB+AC+BC ) (nhân cả hai vế với 3/4) (4)
Từ (3),(4) => 3/4(AB+AC+BC) < AM+BN+CP < AB+AC+BC
♥Tomato♥
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
B1
Áp dụng định lý Pytago vào các tam giác vuông ta được:
PC^2=AP^2+AC^2
BN^2=AB^2+AN^2
BC^2=AB^2+AC^2
Theo tính chất tam giác vuông ta được:
AM=\(\dfrac{1}{2}\)BC=>AM^2=\(\dfrac{1}{4}\)BC^2
Từ trên =>AM^2+BN^2+CP^2=
\(\dfrac{1}{4}\)BC^2+AB^2+\(\dfrac{\left(AC\right)^2}{4}\)+AC^2+\(\dfrac{\left(AB\right)^2}{4}\)=\(\dfrac{2\left(BC\right)^2}{4}\)+BC^2=\(\dfrac{3}{2}\)BC^2(đpcm)
\(\dfrac{1}{4}\)