Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B D A C
Hình hơi xấu xíu :vv
a) Xét t.giác AMB và t.giác DMC có :
MA = MD ( gt )
\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)
MB = MC (gt)
Vậy t.giác AMB = t.giác DMC (c.g.c)
b) Do : t.giác AMB = t.giác DMC ( cmt )
=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét t.giác ABC và t.giác DCB có :
BC : cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB = DC ( cmt )
Vậy t.giác ABC = t.giác DCB ( c.g.c )
=> AC = BD
\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.
=> AC // BD
Vì : t.giác ABC = t.giác DCB ( cmt )
=> \(\widehat{BAC}=\widehat{BDC}=90^0\)
a) Xét ΔABM và ΔDCM ta có:
AM = DM (GT)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
BM = CM (GT)
=> ΔABM = ΔDCM (c - g - c)
b) Có: ΔABM = ΔDCM (câu a)
=> \(\widehat{ABM}=\widehat{MCD}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc so le trong
=> AB // CD
c) Có: AB // CD (câu b)
=> \(\widehat{BAC}+\widehat{DCA}=180^0\) (2 góc trong cùng phía)
=> \(\widehat{DCA}=180^0-\widehat{BAC}=180^0-90^0\)
=> \(\widehat{DCA}=90^0\)
d) Có: ΔABM = ΔDCM (câu a)
=> AB = CD (2 cạnh tương ứng)
Xét ΔABC và ΔCDA ta có:
AB = CD (cmt)
\(\widehat{BAC}=\widehat{DCA}\left(=90^0\right)\)
AC: cạnh chung
=> ΔABC = ΔCDA (c - g - c)
=> BC = AD (2 cạnh tương ứng)
e) Có: ΔABC = ΔCDA (câu d)
=> BC = AD (2 cạnh tương ứng)
Mà: \(AM=\frac{1}{2}AD\) (GT)
=> \(AM=\frac{1}{2}BC\)
a b c m d 1 2 3 4 e f
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
A B C M D E F
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
Cách lớp 8:
Bạn phải nói là AM là đường trung tuyến ứng với cạnh huyền ms đúng chứ
Hình tự vẽ nhé:
a) Xét \(\Delta MAC\)và \(\Delta MDB\):
MC=MB(gt)
MA=MD(gt)
\(\widehat{AMC}=\widehat{DMB}\)(đối đỉnh)
\(\Rightarrow\Delta MAC=\Delta MBD\left(c-g-c\right)\)
a) Xét tam giác AIB và CID ta có
IA=IC(gt)
AIB=DIC(đói đỉnh)
IB=ID
=>tam giác AIB = tam gics CID
b) đề sai nha M là trung điểm của AB mới đúng nha bạn
Xét tam giác AIM và CIN ta có
IA=IC(gt)
MAC=DCA(vì tam giác AIB=CID)
AM=AB chia 2
CN=CDchia 2
AB=CD(vì tg AIB=tg CID)
=>AM=CN
=>tg AIM=TG CIN
=> IM=IN(tương ứng) (1)
=> GÓC AIM = CIN
mà A,I,C thảng hàng
=> M,I,N thẳng hàng (2)
kết hợp (1) và (2) => I là trung điểm của MN
c) trong tam giác ABC có A > 90độ
=> AIB < 90 độ
mà AIB+BIC=180 độ( 2 góc kề bù)
=> BIC > 90 độ
=> AIC<BIC (đpcm)
d)ta có : tam giac AIB = CID
=> ACD=A
AC vuông góc vs CD => ACD = 90 độ
=> A=90độ
=> tam giác ABC là Tam Giác Vuông Tại A
vậy để AC vuông góc vs CD
Thì tam Giác ABC phải vuông tại A
ok nha em
A B C M D
Xét t/g AMB và t/g DMC có:
MD = MA (gt)
góc AMB = góc DMC (đối đỉnh)
MB = MC (gt)
=> t/g AMB = t/g DMC (c-g-c)
:v bài này dễ mak ( hình thì như ST nha )
Xét t/g AMB và t/g DMC có :
MB = MC ( gt )
AM = MD ( gt )
\(\widehat{AMB}\)= \(\widehat{DMC}\)( đối đỉnh )
\(\Rightarrow\)t/g AMB = t/g DMC ( c-g-c )
A B C D M
a)Xét ΔAMB và ΔDMC có:
AD=DM(gt)
\(\widehat{AMB}=\widehat{MDC}\left(đđ\right)\)
BM=MC(gt)
=> ΔAMB=ΔDMC (c.g.c)
b) Vì: ΔAMB=ΔDMC(cmt)
=> \(\widehat{ABM}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong
=> AB//DC
Mà: \(AB\perp AC\left(gt\right)\)
=> \(DC\perp AC\)
c)Vì: ΔABC vuông tại A(gt)
Mà AM là đường trung tuyến ứng vs cạnh BC
=> \(AM=\frac{1}{2}BC\)