\(\Delta\)ABC= \(\Delta\)A'B'C'. M và M' lần lượt là trun...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Vì \(\Delta ABC=\Delta A'B'C'\Rightarrow\) AB = A'B' ; BC = B'C'

Ta co: BM=1/2BC ; B'M'=1/2B'C' mà BC = B'C' => BM =B'M'

a, \(\Delta AMB=\Delta A'M'B'\left(ccc\right)\)vì có AB = A'B' ;  BM =B'M' ; AM = A'M'

b, => \(\widehat{AMB}=\widehat{A'M'B'}\)

Ta co: \(\widehat{AMB}+\widehat{AMC}=180^O\) ;  \(\widehat{A'M'B'}+\widehat{A'M'C'}=180^o\)

mà \(\widehat{AMB}=\widehat{A'M'B'}\)  => \(\widehat{AMC}=\widehat{A'M'C'}\)

3 tháng 8 2017

A B C M A' B' C' M'

a/ Ta có: \(\Delta ABC=\Delta A'B'C'\)

\(\Rightarrow AB=A'B'\left(1\right)\)

\(\Rightarrow BC=B'C'\)

\(\Rightarrow BM=B'M'\left(2\right)\)

Xét \(\Delta AMB\)và \(\Delta A'M'B'\) có

\(AB=A'B'\)(theo )

\(BM=B'M'\)(theo 2)

\(AM=A'M'\)(gt)

\(\Rightarrow\Delta AMB=\Delta A'M'B'\)

b/ Ta có: \(\Delta AMB=\Delta A'M'B'\)

\(\Rightarrow\widehat{AMB}=\widehat{A'M'B'}\)

Mà \(\hept{\begin{cases}\widehat{AMC}=180^o-\widehat{AMB}\\\widehat{A'M'C'}=180^o-\widehat{A'M'B'}\end{cases}}\)

\(\Rightarrow\widehat{AMC}=\widehat{A'M'C'}\)

19 tháng 1 2018

a, Xét \(\Delta\)ABC và \(\Delta\)A'B'C', có

\(\Delta\)ABC = \(\Delta\)A'B'C' (gt)

-> AB = A'B'

AC = A'C'

BC = B'C'

=> \(\Delta\)ABC = \(\Delta\)A'B'C' (c.c.c)

=> AH = A'H' (2 cạnh tương ứng)

Chúc bạn học tốt

19 tháng 1 2018

Làm sai be bét oe

19 tháng 11 2017

A B C D E F M K

a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:

AB=DE và AC=DF(gt)

\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai

=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)

b. vì 2 tam giác = nhau 

=> BC=EF(2 cạnh tương ứng)

Mà  M và K lần lượt là trung điểm của BC và EF.

=> CM=FK

c.Vì 2 tam giác ABC và DEF bằng nhau nên:

\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)

Xét \(\Delta ACM\)và \(\Delta DFK\)có:

AC=DF(gt)

\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)

CM=FK(ch/m trên)

=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)

=> AM =DK(2 cạnh tương ứng)

19 tháng 11 2017

đề có chút sai hay sao ý

22 tháng 10 2016

Giúp mk đi khocroi

A B C M N P

Bài làm

Trên tia đối của tia NM lấy điểm P sao cho MN = NP

Nối M với C

Xét tam giác AMN và tam giác CPN có:

AN = NC ( N là trung điểm của AC )

ANM = PNC ( hai góc đối đỉnh )

MN = NP ( cmt )

=>  tam giác AMN = tam giác CPN ( c.g.c )

=> AMN = CPN ( hai góc tương ứng )

Mà hai góc đó ở vị trí so le trong

=> AM // CP

Do đó: MB // CP ( Vì M thuộc AB )

=> BCM = CMP ( hai góc so le trong )

=> PCM = BMC( hai góc so le trong )

Xét tam giác BMC và tam giác PCM có:

BMC = PCM ( cmt )

MC chung

BCM = CMP ( cmt )

=>  tam giác BMC = tam giác PCM ( g.c.g )

=> MP = BC

Mà N là trung điểm của MP ( Vì MN = NP )

=> MN = 1/2BC                                                 ( 1 )

Lại có: PMC = BCM ( cmt )

Mà hai góc này ở vị trí so le trong.

=> MN // BC                                                      ( 2 ) 

Từ ( 1 )( 2 ) => MN // BC và MN = 1/2BC

Vậy MN // BC và MN = 1/2BC ( đpcm )

* Kết luận: Trong một tam giác, đường thẳng nối trung điểm của hai cạnh bất kì luôn song song và bằng một phần hai cạnh còn lại. 

# Chúc bạn học tốt #

12 tháng 6 2019

Bộ bạn chưa đọc 3 cách chứng minh đường trung bình của mình ở đây à:

Câu hỏi của ๖ۣۜK-๖ۣۜA๖L๖ۣۜ♡K♡ 2๖ۣۜK7 (Team TST 9) - Toán lớp 7 - Học toán với OnlineMath

Không được đăng câu hỏi lên diễn đàn vs mục đích hỏi nhé-đó là nội quy.

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0