Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N I a b
a.Tam giác ABC có AB=AC vậy tâm giác ABC là tam giác cân
Vậy xét tam giác AMB và AMC có AB=AC (gt)
góc B=góc C ( tam giác cân)
BM=CM (gt)
Vậy tam giác AMB=tam giác AMC (c.g.c)
b.
Vì tam giác AMB= tam giác AMC nên góc AMC= góc AMB mà AMB + AMC = 180 ( kề bù)
Vậy suy ra AMB=AMC=90 độ vậy AM vuông góc BC
Ta có AM vuông góc BC
AM vuông góc a
Vậy BC//a
c.
Ta có góc NAC=góc ACM( AN//MC)
AC chung
góc NCA= góc MAC ( AM// NC)
Vậy tam giác AMC= tam giác CNA (g.c.g)
Chắc là bạn vẽ hình được!!
a) Xét 2 tam giác AMH và NMB có:
AM = MN (giả thiết)
\(\widehat{AMH}=\widehat{BMN}\) (hai góc đối đỉnh)
BM = MH (giả thiết)
=> \(\Delta\)AMH = \(\Delta\)NMB (c.g.c)
=> \(\widehat{MBN}=\widehat{MHA}=90^o\)(hai góc tương ứng) => \(NB⊥BC\)
b) Vì \(\Delta\)ABC cân tại A => \(\widehat{ABC}< 90^o\), mà \(\widehat{MBN}=90^o\) (cmt)
=> \(\widehat{ABC}< \widehat{MBN}\)
Xét \(\Delta ABN\), đường trung tuyến BM có \(\widehat{ABC}< \widehat{MBN}\) => BN < BA.
c) Xét tứ giác ABNH có: BM = MH (giả thiết)
MN = AM (giả thiết)
=> tứ giác ABNH là hình bình hành (theo DHNB)
=> AM là tia phân giác \(\widehat{BAH}\)(tính chất của hình bình hành)
=> \(\widehat{BAM}=\widehat{MAH}\)
d \(\Delta ABC\)cân tại A (giả thiết), AH là đường cao => \(AH⊥BC\) (1)=> AH cũng là đường trung tuyến => BH = HC.
Xét \(\Delta BNC\)vuông tại B có, đường trung tuyến BI (giả thiết)
=> BI = IC (t/c đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền trong tam giác vuông)
=> \(\Delta BIC\)cân tại I, mà BH = HC (cmt) => IH là đường trung tuyến của \(\Delta BIC\)cân
=> IH cũng là đường cao của \(\Delta BIC\)=> \(IH⊥BC\)(2)
Từ (1) và (2) => A, H, I thẳng hàng.
P/s: mình mất 45 phút để viết hết toàn bộ bài này!!
Tự vẽ hình nha :
a)
Xét tam giác AMH và tam giác NMB có :
AM = NM
BM = HM => \(\Delta AMH=\Delta NMB\) (1)
Góc BMN = góc HMA
b) Từ 1 , ta suy ra :
AH = BN
Xét tam giác vuông AHB có AB là cạnh huyền
=> AH < AB
Đồng thời BN < AB (Điều phải chứng minh)
c) Từ BN < AB
=> Góc BAM < góc BNA (Quan hệ góc và cạnh)
Mặt khác góc BNA = góc MAH (từ 1)
=> Góc BAM = Góc MAH
d) Nối BI lại
Vì tam giác BNC vuông nên
Với BI là đường trung tuyến thì
BI = NI = IC
Xét tam giác ABI và tam giác ACI có :
BI = CI
AB = AC => \(\Delta ABI=\Delta ACI\)
AI chung
=> Góc BAI = Góc CAI
=> AI là đường phân giác của góc BAC (a)
Mặt khác , tam giác ABC cân tại A và AH là đường cao
=> AH cũng là đường phân giác (b)
Từ (a) và (b)
=> A , H , I thẳng hàng
A B C E M
a, xét tam giác AMB và tam giác EMC có :
AM = ME (gt)
góc AMB = góc EMC (hai góc đối đỉnh)
BM = MC (gt)
\(\Rightarrow\)\(\Delta AMB=\Delta EMC\)(c-g-c)
b,xét tam giác BME và tam giác CMA có :
BM = MC (gt)
AM = ME (gt)
góc AMB = góc CME (hai góc đối đỉnh )
\(\Rightarrow\Delta BME=\Delta CMA\)(c-g-c)
\(\Rightarrow\widehat{ACM}=\widehat{BME}\)(hai góc tương ứng)
\(\Rightarrow AC\)// BE(đpcm)
c,xét tam giác ABC và tam giác ECB có :
AM = ME (gt)
BC là cạnh chung
góc ACB = góc CBE (cmt)
\(\Rightarrow\Delta ABC=\Delta ECB\)(c-g-c)
\(\Rightarrow\widehat{BAC}=\widehat{BEC}=90^0\) (hai góc tương ứng)
\(\Rightarrow\Delta BEC\)vuông tại E
A B C M D 1 2 1 1 3 4
a, Xét \(\Delta\)AMB và \(\Delta\)DMC có
AM =MD (gt)
^M1 = ^M2 (đối đỉnh)
MB = MC (M là trung điểm BC)
=>\(\Delta AMB=\Delta DMC\left(c.g.c\right)\)
b, Từ \(\Delta AMB=\Delta DMC\left(cmt\right)\)
=> ^B1 = ^C1
Mà 2 góc này ở vị trí so le trong
=> AB // CD
c, Xét \(\Delta AMC\)và \(\Delta DMB\)có
^M3 = ^M4 (đối đỉnh)
MA = MD (gt)
MB = MC (trung điểm)
\(\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> AC = BD
A B C M D
a) Xét tam giác AMB và tam giác DMC có :
AM = DM (gt)
MB=MC(gt)
góc AMB = góc DMC (đối đỉnh)
nên tam giác AMB = tam giác DMC (c.g.c)
b) Ta có tam giác AMB = tam giác DMC (cmt) - CMT là chứng mình trên
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AB song song DC
c) Xét tam giác AMC và tam giác DMB có :
AM = DM (gt)
CM = BM (gt)
góc AMC = góc DMB (đối đỉnh)
nên tam giác AMC = tam giác DMB (cgc)
suy ra AC=DB (2 cạnh tương ứng)
HỌC TỐT NHA
Lâu rồi k giải toán, giờ trở lại vs Toán thân iu
Ta có hình vẽ:
A B C D M I K
a/ Xét tam giác ABD và tam giác CMD có:
AD = DC (vì D là trung điểm AC)
góc ADB = góc CDM (đối đỉnh)
DB = DM (GT)
Vậy tam giác ABD = tam giác CMD (c.g.c)
=> AB = CM (2 cạnh tương ứng)
Ta có: tam giác ABD = tam giác CMD
=> góc BAC = góc MCA (2 góc tương ứng)
b/ Xét tam giác AMD và BCD có:
AD = DC (vì D là trung điểm AC)
góc ADM = góc BDC (đối đỉnh)
DM = DB (GT)
Vậy tam giác AMD = tam giác BCD (c.g.c)
=> góc MAD = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AM // BC (đpcm)
c/ Xét tam giác ABC và tam giác AMC có:
AC: cạnh chung
AB = CM (do tam giác ABD = tam giác CMD)
AM = BC (do tam giác AMD = tam giác BCD)
=> tam giác ABC = tam giác AMC (c.c.c)
d/ Ta có: AB = CM (câu a)
Mà I là trung điểm AB
và K là trung điểm CM
=> AI = IB = MK = KC
Xét tam giác IAD và tam giác KCD có:
AI = CK (đã chứng minh trên)
góc BAC = góc MCA (câu a)
AD = DC (vì D là trung điểm AC)
=> tam giác IAD = tam giác KCD (c.g.c)
=> góc IDA = góc KDC (2 góc tương ứng)
Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800
=> góc ADM + góc MDK + góc IDA = 1800
=> góc IDK = 1800
hay K,D,I thẳng hàng
a, Xét \(\Delta\)ABC và \(\Delta\)A'B'C', có
\(\Delta\)ABC = \(\Delta\)A'B'C' (gt)
-> AB = A'B'
AC = A'C'
BC = B'C'
=> \(\Delta\)ABC = \(\Delta\)A'B'C' (c.c.c)
=> AH = A'H' (2 cạnh tương ứng)
Chúc bạn học tốt
Vì \(\Delta ABC=\Delta A'B'C'\Rightarrow\) AB = A'B' ; BC = B'C'
Ta co: BM=1/2BC ; B'M'=1/2B'C' mà BC = B'C' => BM =B'M'
a, \(\Delta AMB=\Delta A'M'B'\left(ccc\right)\)vì có AB = A'B' ; BM =B'M' ; AM = A'M'
b, => \(\widehat{AMB}=\widehat{A'M'B'}\)
Ta co: \(\widehat{AMB}+\widehat{AMC}=180^O\) ; \(\widehat{A'M'B'}+\widehat{A'M'C'}=180^o\)
mà \(\widehat{AMB}=\widehat{A'M'B'}\) => \(\widehat{AMC}=\widehat{A'M'C'}\)
A B C M A' B' C' M'
a/ Ta có: \(\Delta ABC=\Delta A'B'C'\)
\(\Rightarrow AB=A'B'\left(1\right)\)
\(\Rightarrow BC=B'C'\)
\(\Rightarrow BM=B'M'\left(2\right)\)
Xét \(\Delta AMB\)và \(\Delta A'M'B'\) có
\(AB=A'B'\)(theo )
\(BM=B'M'\)(theo 2)
\(AM=A'M'\)(gt)
\(\Rightarrow\Delta AMB=\Delta A'M'B'\)
b/ Ta có: \(\Delta AMB=\Delta A'M'B'\)
\(\Rightarrow\widehat{AMB}=\widehat{A'M'B'}\)
Mà \(\hept{\begin{cases}\widehat{AMC}=180^o-\widehat{AMB}\\\widehat{A'M'C'}=180^o-\widehat{A'M'B'}\end{cases}}\)
\(\Rightarrow\widehat{AMC}=\widehat{A'M'C'}\)