\(\Delta\)ABC có AB= AC Lấy điểm D trên cảnh AB .Diểm E trên cảnh AC ,Sao cho AD=AE <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔACD có

AB=AC
góc BAE chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

DB=EC

\(\widehat{OBD}=\widehat{OCE}\)

Do đó: ΔODB=ΔOEC

28 tháng 8 2017

a) Xét ∆BEA và ∆CDA, ta có:

BA = CA (gt)

\(\widehat{A}\)chung

AE = AD (gt)

Suy ra: ∆BEA = ∆CDA (c.g.c)

Vậy BE = CD (hai cạnh tương ứng)

b) ∆BEA = ∆CDA (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)

\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)

\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)

Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)

AB = AC (gt)

AE + EC = AD + DB mà AE = AD (gt) => EC = DB

Xét ∆ODB và ∆OCE, ta có:

\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)

DB = EC (chứng minh trên)

\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)

Suy ra: ∆ODB = ∆OEC (g.c.g)

23 tháng 12 2021

Chuẩn quá chời!

 

4 tháng 11 2016

 

a/ Xét tam giác BCD và tam giác BCE có

-góc B = góc C

-BD = EC

-BC: cạnh chung

=> tam giác BCD = tam giác BCE (cạnh góc cạnh)

=> BE=CD (2 cạnh tương ứng)

b/ Xét tam giác KBD và tam giác KCE có

-Góc BKD = góc CKE (đối đỉnh)

-BD=CE

-KB=KC

=> tam giác KBD = tam giác KCE

5 tháng 11 2016

ở câu a tại sao góc b= góc c vậy bn

29 tháng 11 2019

A E D B C

\(a)\)Xét \(\Delta ABE\) và \(\Delta ACD\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{A}:\) chung

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)(2 cạnh tương ứng)

\(b)AB=DA+DB\)

\(AC=EA+EC\)

Mà \(AB=AC;AD=AE\)

\(\Rightarrow DB=EC\)

Xét \(\Delta BOD\) và \(\Delta COE\) có:

\(\widehat{BOD}=\widehat{COE}\left(đ^2\right)\)

\(DB=EC\left(cmt\right)\)

\(\widehat{DBE}=\widehat{ECD}\left(\Delta ABE=\Delta ACD\right)\)

\(\Rightarrow\Delta BOD=\Delta COE\left(g.c.g\right)\)

2 tháng 2 2019

tự vẽ hình

a) Xét tam giác ABE và tam giác ACD, ta có:

Góc BAE= góc DAC(hay góc A là góc chung)

AD=AC(gt)

AD=AE(gt)

Vậy tam giác ABE = tam giác ACD (c-g-c)

=> BE=CD ( cặp cạnh t/ứng)

=> góc ABE=góc ACD (cặp góc t/ứng) hay góc ABK=góc ACK

 b) Vì AB=AC, AD=AE => BD=CE( vì AD+BD=AB;AE+EC=AC)

tam giác DBK có: góc D+góc B+góc K=180 độ

tam giác KCE có: góc K+góc C+góc E=180 độ

mà Góc B= góc C(cmt) và Góc K1=Góc K1(đối đỉnh)---bạn tự kí hiệu nha :")

=> góc D=góc E

Xét tam giác BKD và tam giác KCE, ta có:

Góc BDK=góc KEC(cmt)

Góc DBK=góc ECK(cmt)

DB=CE(cmt)

Vậy tam giác BKD = tam giác KCE(g-c-g)

=> DK=EK(cặp cạnh tướng ứng)

c) Xét tam giác ADK và tam giác AEK, ta có:

AD=AE(gt)

DK=KE(cmt)

AK là cạnh chung

Vậy tam giác ADK= tam giác AEK(c-c-c)

=> góc DAK=góc EAK(cặp góc t/ứng) hay góc BAK=góc CAK

=> AK là p/g của góc BAC

d) Góc BAK=góc CAK hay góc BAI=góc CAI

Xét tam giác BAI và tam giác CAI, ta có:

AB=AC(gt)

AI là cạnh chung

Góc BAI=góc CAI (cmt)

Vậy tam giác BAI = tam giác CAI(c-g-c)

=>Góc AIB=góc AIC(cặp góc t/ứng)

mà góc AIB+góc AIC=180 độ => AIB=AIC=90 độ

=> AI vuông góc với BC

13 tháng 1 2017

A B C D E O

a) Vì \(\Delta\)ABC có AB = AC nên \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\) (góc đáy)

hay \(\widehat{DBC}\) = \(\widehat{ECB}\)

Ta có: AD + DB = AB

AE + EC = AC

mà AB = AC; AD = AE nên DB = EC

Xét \(\Delta\)BDC và \(\Delta\)CEB có:

BD = CE (chứng minh trên)

\(\widehat{DBC}\) = \(\widehat{ECB}\) (c/m trên)

BC chung

=> \(\Delta\)BDC = \(\Delta\)CEB (c.g.c)

=> CD = BE (2 cạnh tương ứng)

b) Do \(\Delta\)BDC = \(\Delta\)CEB (câu a)

=> \(\widehat{BDC}\) = \(\widehat{CEB}\) (2 góc tương ứng)

hay \(\widehat{BDO}\) = \(\widehat{CEO}\)

\(\widehat{DCB}\) = \(\widehat{EBC}\) (2 góc tương ứng)
Lại có: \(\widehat{DBO}\) + \(\widehat{EBC}\) = \(\widehat{ABC}\)

\(\widehat{ECO}\) + \(\widehat{DCB}\) = \(\widehat{ACB}\)

\(\widehat{EBC}\) = \(\widehat{DCB}\); \(\widehat{ABC}\) = \(\widehat{ACB}\)

=> \(\widehat{DBO}\) = \(\widehat{ECO}\)

Xét \(\Delta\)BOD và \(\Delta\)COE có:

\(\widehat{DBO}\) = \(\widehat{ECO}\) (c/m trên)

BD = CE (c/m câu a)

\(\widehat{BDO}\) = \(\widehat{CEO}\) (c/m trên)

=> \(\Delta\)BOD = \(\Delta\)COE (g.c.g)

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

13 tháng 3 2017

Ta có hình vẽ:

A B C D E K

a/ Xét \(\Delta ABE\)\(\Delta ACD\) có:

AB = AC (gt)

\(\widehat{A}:chung\)

AE = AD (gt)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\left(đpcm\right)\)

b/ Vì \(\Delta ABE=\Delta ACD\left(ýa\right)\)

\(\Rightarrow\left\{{}\begin{matrix}BE=CD\\\widehat{ABE}=\widehat{ACD}\end{matrix}\right.\) (đpcm)

c/ Ta có: AD + BD = AB

AE + CE = AC

mà AD = AE(gt) ; AB = AC(gt)

=> BD = CE

Xét \(\Delta DBC\)\(\Delta ECB\) có:

BD = CE (cmt)

\(\widehat{DBC}=\widehat{ECB}\) (\(\Delta ABC\) cân tại A)

BC: chung

=> \(\Delta DBC=\Delta ECB\left(c-g-c\right)\)

=> \(\widehat{BDC}=\widehat{CEB}\) (g t/ứng)

Xét \(\Delta KBD\)\(\Delta KCE\) có:

\(\widehat{ABE}=\widehat{ACD}\left(đãcm\right)\)

BD = CE (đã cm)

\(\widehat{BDC}=\widehat{CEB}\left(cmt\right)\)

=> \(\Delta KBD=\Delta KCE\left(g-c-g\right)\)

=> KB = KC (c t/ứng)

=> \(\Delta KBC\) là tam giác cân tại K

13 tháng 3 2017

Tự vẽ hình nhoa!

a) Vì \(\Delta ABC\) cân tại A

\(\Rightarrow AB=AC\)\(\widehat{ABC}=\widehat{ACB}\)

Xét \(\Delta ABE\)\(\Delta ACD\) có:

\(AB=AC\)

\(\widehat{A}\) chung

\(AE=AD\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)

b) Vì \(\Delta ABE=\Delta ACD\) (câu a)

\(\Rightarrow BE=CD\)\(\widehat{ABE}=\widehat{ACD}\)

c) Ta có: \(\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)

hay \(\widehat{KBC}=\widehat{KCB}\)

\(\Rightarrow\Delta KBC\) cân tại K.

26 tháng 2 2018

a) xét \(\Delta\)ABH và\(\Delta\)AHC có:AH chung. BH=HC.AB=AC=>bằng nhau ccc=>góc AHC =góc AHB

mà AHB + AHC =180 độ => góc AHB=AHC=90độ (đpcm)

b)ta thấy góc ABC+CBD=180độ;góc ACB+BCE=180độ=>góc CBD=BCE(kề bù vs 2 góc băng nhau)

xét \(\Delta\)DBC và\(\Delta\)BCE có :BD=CE,góc CBD=BCE,BC chung =>góc D= E,góc DCB=DBC=>góc DBK=ECK(vì góc DBC=ECB)

xét \(\Delta\)DBK và EKC có góc D=E,BD=CE,góc DBK=ECK=>bằng nhau gcg