Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tg ABH và ACK có :
AB=AC(tg ABC cân tại A)
\(\widehat{A}-chung\)
\(\widehat{AHB}=\widehat{AKC}=90^o\)
=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)
b) Do tg ABH=ACK (cmt)
\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)
Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tg OBC cân tại O
=> OB=OC (đccm)
c) Do : AB=AC (tg ABC cân tại A)
MB=NC(gt)
=> AB+BM=AC+CN
=> AM=AN
=> Tg AMN cân tại A
\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
- Do tg ABH=ACK (cmt)
=> AK=AH
=> Tg AKH cân tại A
\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)
Mà chúng là 2 góc đồng vị
=> KH//MN (đccm)
#H
B B C C A A D D E E H H K K
a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)
Lại có DC = DB + BC = CE + BC = BE
Vậy thì \(\Delta DKC=\Delta EHB\) (Cạnh huyền góc nhọn)
\(\Rightarrow BH=CK\)
c) Xét hai tam giác vuông ABH và ACK có :
BH = CK
AC = AC
\(\Rightarrow\Delta BAH=\Delta CAK\) (Cạnh huyền - cạnh góc vuông)
hình bạn tự vẽ nha
a) \(\Delta ABC\) có \(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)
vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)
vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)
từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)
xét tam giác BCD và tam giác CBE có:
\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)
\(\stackrel\frown{B}=\stackrel\frown{C}\)
BC chung
\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)
b) \(\Delta BOC\)có \(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)
c) xét \(\Delta AOB\)và \(\Delta AOC\)có
AO chung
AB=AC
\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)
\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)
\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)
vì \(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)
\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)
Xét \(\Delta OAK\)và \(\Delta OAH\)có:
\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)
\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)
OA chung
\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)
\(\Rightarrow OH=OK\)
nếu sai ở đâu mong bạn bỏ qua cho nha
a, Xét tam giác vuông ABH và tam giác vuông MBH có góc MBH = góc ABH (do BH là phân giác góc B) HB chung => Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )
b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng) => H thuộc trung trực của AM(1) Ta còn có BM = BA ( cạnh tương ứng ) => B thuộc trung trực của AM (2) Từ (1) và (2) suy ra BH là trung trực của AM
c, Xét tam giác BCN có NM vuông góc với BC => NM là đường cao ứng với cạnh BC có CA vuông góc với BN => CA là đường cao ứng với cạnh BN mà chúng giao nhau ở H nên H là trực tâm nên BH là đường cao ứng với cạnh CN => BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM) => CN song song với AM
d, Từ câu trên ta đã chứng minh BH vuông góc vói CN
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
b) Từ tam giác vuông AHB = tam giác vuông AHC
=> ^BAH = ^CAH ( hai góc tương ứng )
Xét tam giác vuông AHE và tam giác vuông AHF có :
AH chung
^BAH = ^CAH ( cmt )
=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )
=> HE = HF ( hai cạnh tương ứng )
Bạn tự vẽ hình nha
a) Ta có:\(AK\perp HC\\ EH\perp HC\Rightarrow AK//EH\)
nên \(\widehat{BEA}=\widehat{KAC}\)(2 góc đồng vị)
Mà \(\widehat{BAE}=\widehat{CKA}\left(=90^0\right)\)
\(\Rightarrow\widehat{EBA}=\widehat{ACK}\)
b)Xét \(\Delta\)IBA và \(\Delta\)KCA có:\(\hept{\begin{cases}\widehat{IBA}=\widehat{KCA}\left(cmt\right)\\\widehat{BAE}=\widehat{CKA}=90^0\\AB=AC\left(gt\right)\end{cases}}\)
Suy ra đpcm
c) Theo b ta có được IA =AK
mà \(\widehat{HIA}=\widehat{IHK}=\widehat{HKA}=90^0\)
nên IHKA là hình vuông
nên HA là phân giác IHK (tính chất nha)
hay HA là phân giác EHC
HÌNH BẠN TỰ VẼ NHA !!!
a. Tam giác ABC cân tại A => Ab = AC
Xét tam giác ABH và tam giác ACK có :
AB = AC
góc A chung
góc AHB = AKC = 90 độ
=> tam giác ABH = tam giác ACK ( cạnh huyền - góc nhọn )
=> BH = CK
b. Xét tam giác CBK và tam giác BCH có :
BH = CK
BC chung
góc CKB = BHC = 90 độ
=> tam giác CBK = tam giác BCH ( cạnh huyền - cạnh góc vuông )
có đúng ko