Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A E C 30 o
Bài làm
a) Vì BA là đường cao của tam giác BCE (BA | EC)
Mà BE là đường trung tuyến của tam giác BCE (AE = AC)
=> Tam giác BCE cân tại B (1)
Mà ta có: \(\widehat{ABC}+\widehat{C}=90^0\)
hay \(30^0+\widehat{C}=90^0\Rightarrow\widehat{C}=60^0\) (2)
Từ (1) và (2) => Tam giác BCE đều
b) Ta có: A là trung điểm của EC (AE = EC)
=> \(AC=\frac{1}{2}EC\)
Mà EC = BC (Tam giác BCE đều)
=> \(AC=\frac{1}{2}BC\)(đpcm)
vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)
=>AM=1/2*BC=BM=CM
xét tam giácBMA và tam giác DMC có :
AM=MD(gt)
góc BMA=góc DMC (đ đ)
BM=MC(gt)
=> 2 tam giác đó bằng nhau(c-g-c)
=>ACB=ADC(2GTU)
AB=DC(2ctu)
ta có BM+CM =BC, AM+MD=AD
mà BM=CM, AM=MD
và AM=BM=CM
=> BC=AD
xét tam giác BAC và tam giác DCA có :
BA=DC (cmt)
AC là cạnh chung
BC=AD (cmt)
=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC
a) . Xét\(\Delta ABE\) và \(\Delta ADE\) có:
BA = DA (gt)
Góc BAE = góc DAE ( gt)
AE cạnh chung
nên \(\Delta ADE\) = \(\Delta ABE\)( c-g-c)
b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)= \(^{180^o}\)
Suy ra : \(\widehat{AIB}\) = \(180^o\)- \(\widehat{ABI}-\widehat{BAI}\)
\(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)
Suy ra: \(\widehat{AID}\) = \(180^O\) - \(\widehat{ADI}\)-\(\widehat{IAD}\)
Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)
\(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)
\(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)
Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )
MÀ \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )
NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)
HAY \(AE\perp BD\)
B B C C A A D D E E H H K K
a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)
Lại có DC = DB + BC = CE + BC = BE
Vậy thì \(\Delta DKC=\Delta EHB\) (Cạnh huyền góc nhọn)
\(\Rightarrow BH=CK\)
c) Xét hai tam giác vuông ABH và ACK có :
BH = CK
AC = AC
\(\Rightarrow\Delta BAH=\Delta CAK\) (Cạnh huyền - cạnh góc vuông)
bn tự vẽ nha :
a, Xét \(\Delta ADE\)
có \(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\) là tam giác cân
b, Xét \(\Delta ABC\) và \(\Delta ADE\) có :
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) ( đối đỉnh )
\(AC=AE\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)
\(\Rightarrow\widehat{EDA}=\widehat{ACB}\) ( hai góc tương ứng)
\(\Rightarrow ED\)//\(BC\)
bn có thể trình bày rõ hơn ở phần a đc ko?