\(\Delta\)\(ABC\) cân tại A. Trên tia đối của tia AB lấ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

bn tự vẽ nha :

a, Xét \(\Delta ADE\)

 có \(AD=AE\left(gt\right)\)

 \(\Rightarrow\Delta ADE\) là tam giác cân

b, Xét \(\Delta ABC\) và \(\Delta ADE\) có :

 \(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\) ( đối đỉnh )

\(AC=AE\left(gt\right)\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)

\(\Rightarrow\widehat{EDA}=\widehat{ACB}\) ( hai góc tương ứng)

\(\Rightarrow ED\)//\(BC\)

19 tháng 1 2022

bn có thể trình bày rõ hơn ở phần a đc ko?

22 tháng 10 2016

Giúp mk đi khocroi

B A E C 30 o

Bài làm

a) Vì BA là đường cao của tam giác BCE (BA  |  EC)

Mà BE là đường trung tuyến của tam giác BCE (AE = AC)

=> Tam giác BCE cân tại B                (1)

Mà ta có: \(\widehat{ABC}+\widehat{C}=90^0\)

hay \(30^0+\widehat{C}=90^0\Rightarrow\widehat{C}=60^0\)              (2)

Từ (1) và (2) => Tam giác BCE đều

b) Ta có: A là trung điểm của EC (AE = EC)

=> \(AC=\frac{1}{2}EC\)

Mà EC = BC (Tam giác BCE đều)

=> \(AC=\frac{1}{2}BC\)(đpcm)

2 tháng 4 2017

vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)

=>AM=1/2*BC=BM=CM

xét tam giácBMA và tam giác DMC có : 

AM=MD(gt)

góc BMA=góc DMC (đ đ)

BM=MC(gt)

=> 2 tam giác đó bằng nhau(c-g-c)

=>ACB=ADC(2GTU) 

AB=DC(2ctu)

ta có BM+CM =BC, AM+MD=AD

mà BM=CM, AM=MD

và  AM=BM=CM

=> BC=AD

xét tam giác BAC và tam giác DCA có :

BA=DC (cmt)

AC là cạnh chung 

BC=AD (cmt)

=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC

2 tháng 4 2017

b) tam giác MAC= tam giác MAE (cgc)=> AC= AE (2ctu)=>CAE cân tại A

26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)

7 tháng 2 2018

B B C C A A D D E E H H K K

a) Do tam giác ABC cân tại A nên \(AB=AC;\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Vậy thì \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{KDC}=\widehat{HEB}\)

Lại có DC = DB + BC = CE + BC = BE

Vậy thì \(\Delta DKC=\Delta EHB\)  (Cạnh huyền góc nhọn)

\(\Rightarrow BH=CK\)

c) Xét hai tam giác vuông ABH và ACK có : 

BH = CK

AC = AC

\(\Rightarrow\Delta BAH=\Delta CAK\)  (Cạnh huyền - cạnh góc vuông)