Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E M
a) Xét hai tam giác vuông ABM và ECM có:
MB = MC (gt)
MA = ME (gt)
Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)
b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)
Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)
Mà \(\widehat{ABM=90^o}\)
Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB
c) Vì \(\Delta ABC\) vuông tại B
nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))
\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà AB = CE (\(\Delta ABM=\Delta ECM\))
Do đó: AC > CE
d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))
Mà hai góc này ở vị trí so le trong
Vậy: BE // AC.
a) xét 2 tam giác ABI và ACI \((\widehat {AIB} = \widehat {AIC} = 90 độ)\)
AB = AC
AI là góc chung
Do đó tam giác ABI = tam giác ACI (cạnh huyền-cạnh góc vuông)
=> BI = CI (2 góc tương ứng)
b) từ tam giác ABI = tam giác ACI -> \(A_1=A_2\)
Xét 2 tam giác AEI và AFI. CÓ:
AE = AF (gt)
AI là cạnh chung
\(A_1=A_2\)
Do đó tam giác AEI = tam giác AFI (c.g.c)
=> EI = FI
-> ΔIEFlà tam giác cân tại I
c)
tam giác AEF cân tại A (vì có AE = AF) => góc E = góc F
Xét tam giác AEF có: góc A + góc E + góc F = 180 độ
-> góc E = \(\frac{\text{180 độ - góc A}}{2}\)(1)
Xét tam giác ABC có: góc A + góc B + góc C
-> \(\frac{\text{180 ĐỘ - GÓC A }}{2}\) (2)
Từ (1) và (2) suy ra góc E = góc B (2 góc nằm ở vị trí 2 góc đồng vị) -> EF song song với BC
chúc bạn học tốt
Hình tự vẽ nha
a. Xét 2 tam giác vuông ABI và AIC có
AB = AC ( gt )
góc ABI = góc ACI ( tam giác ABC cân )
=> tam giác ABI = tam giác ACI (cạnh huyền-góc nhọn)
=> BI = CI (t.ư)
b. ta có : EB = AB - AE
FC = AC - AF
mà AB = AC và AE = AF
=> EB = FC
Xét tam giác ABI và tam giác FIC có
EB = FC ( cmt )
BI = CI ( câu a)
góc EBI = góc FCI ( tam giác ABC cân )
=> tam giác EBI = tam giác FCI ( c.g.c )
=> EI = IF ( t.ư )
=> Tam giác IEF cân tại I
c. Vì tam giác ABI = tam giác ACI
=> góc BAI = góc CAI
Xét tam giác AEP và tam giác AFP có
AE = AF ( gt )
AP chung
góc EAP = FAP ( cmt )
=> tam giác AEP = tam giác AFP ( c.g.c )
=> góc APE = góc APF
mà góc APE + góc APF = \(180^o\)
=> góc APE = góc APF = \(180^o\)
=> AP vuông góc EF
=> AI vuông góc với EF
mà AI vuông góc với BC
=> EF // BC
Chúc bạn học giỏi !
b) Vì AH vuông BC nên góc AHC = 90 độ
Ta có góc HAC + C = 90 độ
=> HAC + 30 = 90
=> HAC = 90 - 30
= 60
Do AD là tia pg của BAC nên
BAD = DAC = HAC: 2 = 30 độ
Ta có HAD + DAC = HAC
=> HAD + 30 = 60
=> HAD = 30 độ. Lại có HAD+ADH=90(t/c g vuông)=>30+ADH=90=>ADH=60độ
Các dấu góc bạn đánh vào nhé! Chỗ nào ko hiểu hỏi mình!
Tự vẽ hình
a) Adụng tc tổng 3 góc của 1 tg ta có:
A + B + C = 180 độ
=> 90+60+C = 180
=> C = 30
12 10 10 A B C M a)
Vì AM là trung tuyến đến BC, nên có \(BM=CM=\dfrac{12}{2}=6\left(cm\right)\)
Xét \(\Delta\)ABM và \(\Delta\)ACM, có:
AM là cạnh chung
AB=AC (gt)
BM=MC (AM là trung tuyến đến BC)
\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}\) và \(\widehat{AMC}\) là 2 góc kề bù, nên:
\(\widehat{AMB}+\widehat{AMC}=180độ\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90\left(độ\right)\)
\(\Rightarrow AM\perp BC\) (đpcm)
Câu b mik lm ko ra số nguyên nhé!!!
Có j thì bn thông cảm nha!
Chúc bạn học tốt!!!
Bn tự vẽ hình nha .
a, Ta có : AB = AC = 10cm
ABC cân tại A .
Mà trong tam giác cân , đường trung tuyến cx là đường cao nên ta có điều phải chứng minh .
A B C E D
a) Vì \(\Delta\)ABC cân tại A
nên \(\widehat{ABC}\) = \(\widehat{ACB}\)
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (1)
Do AD = AE nên \(\Delta\)ADE cân tại A
=> \(\widehat{AED}\) = \(\widehat{ADE}\)
\(\widehat{AED}\) + \(\widehat{ADE}\) + \(\widehat{BAC}\) = 180o
=> 2\(\widehat{AED}\) = 180o - \(\widehat{BAC}\)
=> \(\widehat{AED}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{ABC}\) = \(\widehat{AED}\)
mà 2 góc này ở vị trí đồng vị nên DE // BC.
b) Ta có: AE + EB = AB
AD + DC = AC
mà AE = AD; AB = AC (\(\Delta\)ABC cân tại A)
=> EB = DC
Lại có: \(\widehat{ABC}\) = \(\widehat{ACB}\)
A B C H O F E 1 1 1 1 1 2
Giải:
a) Xét \(\Delta BEC,\Delta CFB\) có:
\(\widehat{E_1}=\widehat{F_1}=90^o\)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CFB\) ( c.huyền - g.nhọn ) ( đpcm )
b) Vì \(\Delta BEC=\Delta CFB\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )
\(\Rightarrow\Delta BOC\) cân tại O
\(\Rightarrow OB=OC\)
Xét \(\Delta ABO,\Delta ACO\) có:
AB = AC ( t/g ABC cân tại A )
AO: cạnh chung
OB = OC ( cmt )
\(\Rightarrow\Delta ABO=\Delta ACO\left(c-c-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\) ( góc t/ứng )
\(\Rightarrow AO\) là tia phân giác của \(\widehat{A}\) ( đpcm )
c) Áp dụng định lí Py-ta-go vào \(\Delta BEC\left(\widehat{E_1}=90^o\right)\)ta có:
\(BC^2=BE^2+CE^2\)
\(\Rightarrow13^2=BE^2+5^2\)
\(\Rightarrow BE^2=144\)
\(\Rightarrow BE=12\)
d) Xét \(\Delta ABH,\Delta ACH\) có:
AB = AC ( t/g ABC cân tại A )
\(\widehat{A_1}=\widehat{A_2}\) ( theo b )
AH: cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) ( góc t/ứng )
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)
\(\Rightarrow AH\perp BC\)
hay \(AO\perp BC\) tại H ( đpcm )
Vậy...