\(\Delta ABC\)cân tại A. Kẻ BE\(\bot\)AC, CF
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

A B C H O F E 1 1 1 1 1 2

Giải:

a) Xét \(\Delta BEC,\Delta CFB\) có:

\(\widehat{E_1}=\widehat{F_1}=90^o\)

BC: cạnh chung

\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta BEC=\Delta CFB\) ( c.huyền - g.nhọn ) ( đpcm )

b) Vì \(\Delta BEC=\Delta CFB\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )

\(\Rightarrow\Delta BOC\) cân tại O

\(\Rightarrow OB=OC\)

Xét \(\Delta ABO,\Delta ACO\) có:

AB = AC ( t/g ABC cân tại A )

AO: cạnh chung

OB = OC ( cmt )

\(\Rightarrow\Delta ABO=\Delta ACO\left(c-c-c\right)\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\) ( góc t/ứng )

\(\Rightarrow AO\) là tia phân giác của \(\widehat{A}\) ( đpcm )

c) Áp dụng định lí Py-ta-go vào \(\Delta BEC\left(\widehat{E_1}=90^o\right)\)ta có:

\(BC^2=BE^2+CE^2\)

\(\Rightarrow13^2=BE^2+5^2\)

\(\Rightarrow BE^2=144\)

\(\Rightarrow BE=12\)

d) Xét \(\Delta ABH,\Delta ACH\) có:
AB = AC ( t/g ABC cân tại A )

\(\widehat{A_1}=\widehat{A_2}\) ( theo b )

AH: cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) ( góc t/ứng )

\(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow AH\perp BC\)

hay \(AO\perp BC\) tại H ( đpcm )

Vậy...

18 tháng 2 2017

I don't Knowbucminh

24 tháng 2 2017

a) xét 2 tam giác ABI và ACI \((\widehat {AIB} = \widehat {AIC} = 90 độ)\)

AB = AC

AI là góc chung

Do đó tam giác ABI = tam giác ACI (cạnh huyền-cạnh góc vuông)

=> BI = CI (2 góc tương ứng)

b) từ tam giác ABI = tam giác ACI -> \(A_1=A_2\)

Xét 2 tam giác AEI và AFI. CÓ:

AE = AF (gt)

AI là cạnh chung

\(A_1=A_2\)

Do đó tam giác AEI = tam giác AFI (c.g.c)

=> EI = FI

-> ΔIEFlà tam giác cân tại I

c)

tam giác AEF cân tại A (vì có AE = AF) => góc E = góc F

Xét tam giác AEF có: góc A + góc E + góc F = 180 độ

-> góc E = \(\frac{\text{180 độ - góc A}}{2}\)(1)

Xét tam giác ABC có: góc A + góc B + góc C

-> \(\frac{\text{180 ĐỘ - GÓC A }}{2}\) (2)

Từ (1) và (2) suy ra góc E = góc B (2 góc nằm ở vị trí 2 góc đồng vị) -> EF song song với BC

chúc bạn học tốt haha

24 tháng 2 2017

Hình tự vẽ nha

a. Xét 2 tam giác vuông ABI và AIC có

AB = AC ( gt )

góc ABI = góc ACI ( tam giác ABC cân )

=> tam giác ABI = tam giác ACI (cạnh huyền-góc nhọn)

=> BI = CI (t.ư)

b. ta có : EB = AB - AE

FC = AC - AF

mà AB = AC và AE = AF

=> EB = FC

Xét tam giác ABI và tam giác FIC có

EB = FC ( cmt )

BI = CI ( câu a)

góc EBI = góc FCI ( tam giác ABC cân )

=> tam giác EBI = tam giác FCI ( c.g.c )

=> EI = IF ( t.ư )

=> Tam giác IEF cân tại I

c. Vì tam giác ABI = tam giác ACI

=> góc BAI = góc CAI

Xét tam giác AEP và tam giác AFP có

AE = AF ( gt )

AP chung

góc EAP = FAP ( cmt )

=> tam giác AEP = tam giác AFP ( c.g.c )

=> góc APE = góc APF

mà góc APE + góc APF = \(180^o\)

=> góc APE = góc APF = \(180^o\)

=> AP vuông góc EF

=> AI vuông góc với EF

mà AI vuông góc với BC

=> EF // BC

Chúc bạn học giỏi !

26 tháng 4 2017

A B C E M

a) Xét hai tam giác vuông ABM và ECM có:

MB = MC (gt)

MA = ME (gt)

Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)

b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)

\(\widehat{ABM=90^o}\)

Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB

c) Vì \(\Delta ABC\) vuông tại B

nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))

\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà AB = CE (\(\Delta ABM=\Delta ECM\))

Do đó: AC > CE

d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))

Mà hai góc này ở vị trí so le trong

Vậy: BE // AC.

26 tháng 3 2017

12 10 10 A B C M a)

Vì AM là trung tuyến đến BC, nên có \(BM=CM=\dfrac{12}{2}=6\left(cm\right)\)

Xét \(\Delta\)ABM và \(\Delta\)ACM, có:

AM là cạnh chung

AB=AC (gt)

BM=MC (AM là trung tuyến đến BC)

\(\Rightarrow\Delta ABM=\Delta ACM\) (c-c-c)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}\)\(\widehat{AMC}\) là 2 góc kề bù, nên:

\(\widehat{AMB}+\widehat{AMC}=180độ\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180}{2}=90\left(độ\right)\)

\(\Rightarrow AM\perp BC\) (đpcm)

Câu b mik lm ko ra số nguyên nhé!!!

Có j thì bn thông cảm nha!bucminh

Chúc bạn học tốt!!!ok

26 tháng 3 2017

Bn tự vẽ hình nha .

a, Ta có : AB = AC = 10cm

ABC cân tại A .

Mà trong tam giác cân , đường trung tuyến cx là đường cao nên ta có điều phải chứng minh .

26 tháng 4 2017

g = 90 là sao bạn

10 tháng 5 2017

góc A = 90 độ à

a: Xét ΔMAB và ΔMEC có 

\(\widehat{MBA}=\widehat{MCE}\)

MB=MC

\(\widehat{AMB}=\widehat{EMC}\)

Do đó: ΔMAB=ΔMEC

b: Ta có: ΔMAB=ΔMEC

nên MA=ME

hay M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

DO đó: ABEC là hình bình hành

SUy ra: AC//BE

c: Sửa đề: BH\(\perp\)AC

Xét ΔAHB vuông tại H và ΔEKC vuông tại K có

AB=EC

\(\widehat{HAB}=\widehat{KEC}\)

Do đó:ΔAHB=ΔEKC

Suy ra: BH=CK

Xét tứ giác BHCK có

BH//CK

BH=CK

Do đó: BHCK là hình bình hành

mà \(\widehat{BHC}=90^0\)

nên BHCK là hình chữ nhật

Suy ra: KH=BC

17 tháng 2 2017

C A B 1 2 H E D F I 1 2 1 2 30 độ

Gọi giao điểm của CE và AH là I

Kéo dài tia CE cắt DB tại F

a) Xét tam giác CAE (\(\widehat{CAE}=90^o\)) và tam giác CHE (\(\widehat{CHE}=90^o\)) có

\(\widehat{C_1}=\widehat{C_2}\left(gt\right)\)
CE : cạnh chung

=> tam giác CAE = tam giác CHE (cạnh huyền - góc nhọn)

=> CA = CH (2 cạnh tương ứng)
EA = EH (2 cạnh tương ứng)

b) Xét tam giác ADE \(\left(\widehat{DAE}=90^o\right)\) và tam giác HBE \(\left(\widehat{BHE}=90^o\right)\) có :

EA = EH (cmt)
\(\widehat{AED}=\widehat{HEB}\) (đối đỉnh)

=> tam giác ADE = tam giác HBE (cạnh góc vuông - góc nhọn kề)

=> AD = HB (2 cạnh t/ứng)

c) Xét tam giác ABC vuông tại A (gt)

=> \(\widehat{C}+\widehat{ABC}=90^o\) (tính chất)

\(\widehat{ABC}=30^o\left(gt\right)\) => \(\widehat{C}=60^o\)

Ta có : \(\left\{\begin{matrix}CA+AD=CD\\CH+HB=CB\end{matrix}\right.\)

Mà : CA = CH (cmt) ; AD = HB (cmt)

=> CD = CB

=> tam giác DBC cân tại C

\(\widehat{C}=60^o\left(cmt\right)\) => tam giác DBC đều

Ta có : CA = CH (cmt)

=> tam giác AHC cân tại C

\(\widehat{C}=60^o\left(cmt\right)\) => tam giác AHC đều

Vì CE là tia phân giác góc C => \(\widehat{C}_1=\widehat{C_2}=\frac{\widehat{C}}{2}=60^o:2=30^o\)

\(\widehat{ABC}=30^o\) (gt) => tam giác EBC cân tại E

d) Xét tam giác ACI và tam giác HCI có:

CA = CH (cmt)
\(\widehat{C_1}=\widehat{C_2}\left(gt\right)\)
CI : cạnh chung

=> tam giác ACI = tam giác HCI (c.g.c)

=> \(\widehat{I_1}=\widehat{I_2}\) (2 góc t/ứng)

\(\widehat{I_1}+\widehat{I_2}=180^o\) (kề bù) => \(\widehat{I_1}=\widehat{I_2}=90^O\Rightarrow CI\perp AH\) (1)

Xét tam giác CDF và tam giác CBF có:

CD = CB (cmt)
\(\widehat{C_1}=\widehat{C_2}\left(gt\right)\)
CF : cạnh chung

=> tam giác CDF = tam giác CBF (c.g.c)

=> \(\widehat{ F_1}=\widehat{F_2}\) (2 góc t/ứng)

CM tương tự ta có : \(CF\perp DB\) (2)

Từ (1) và (2) => \(\)AH // DB (từ vuông góc đến song song)

17 tháng 2 2017

a) xét tam giác AEC vuông tại A ( tam giác ABC vuông tại A theo giả thiết ) và tam giác HCE vuông tại H ( EH vuông góc với BC theo giả thiết) có

CE là cạnh chung

góc ACE = Góc HCE ( CE là tia phân giác góc ACB)

=> tam giác ACE = tam giác HCE ( cạnh huyền - góc nhọn)

=> CA = CH ; EA = EH ( các cạnh tương ứng)

26 tháng 3 2017

A C B H M

26 tháng 3 2017

Xét \(\Delta\)ABC có góc B < góc C

=> AC < AB ( quan hệ giữagóc và cạnh đối diện trong một tam giác )

=> HC < HB ( Quan hệ giữa đường xiên và hình chiếu )

=> MC < MB ( Quan hệ giữa đường xiên và hình chiếu )

26 tháng 3 2017

Xét \(\Delta AMB\) và \(\Delta ANC\) có:

AB = AC (\(\Delta ABC\) cân tại A)

vì BM là trung tuyến => AM = MC

CN là trung tuyến => AN = NB

mà AB = AC (\(\Delta ABC\) cân tại A) => AM = MC = AN = NB

=> AM = AN (cmt)

\(\widehat{A}\) chung

=> \(\Delta AMB=\Delta ANC\left(c.g.c\right)\)

=> \(\widehat{ABM}=\widehat{ACN}\) (2 cạnh tương ứng)

Ta có:

\(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)

\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)

Mà \(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)

=> \(\widehat{ABM}+\widehat{MBC}=\widehat{ACN}+\widehat{NCB}\)

mà \(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

=> \(\widehat{MBC}=\widehat{NCB}\)

\(\Delta GBC\) có: \(\widehat{GBC}=\widehat{GCB}\left(cmt\right)\)

=> \(\Delta GBC\) cân tại G (đpcm)

26 tháng 3 2017

A B C G