\(\Delta ABC;\widehat{A}=60^0\) kẻ phân giác AD của góc BAC CMR:...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E H

ta có AD là phân giác góc BAC thì \(\widehat{BAD}=\widehat{EAD}=\frac{60^0}{2}=30^0\)

hình vẽ ko đc đẹp thông cảm

ta kẻ \(DE\\ AB;E\in AC\)

\(\Rightarrow\frac{EC}{AC}=\frac{DE}{AB}\)(hệ quả của đlý Talets nhé)

\(DE\\ AB\Rightarrow\widehat{AED}=180^0-\widehat{BAC}=180^0-60^0=120^0\)

TỪ ĐÓ TA TÍNH ĐC GÓC EAD=300 \(\Rightarrow\Delta AED\)cân tại E

\(\Rightarrow AE=ED\)

\(\Rightarrow\frac{EC}{AC}=\frac{AE}{AB}\)(thay vào cái tỉ số ở trên nhé)

\(\Rightarrow\frac{EC}{AC}=\frac{AC-AE}{AC}\)

\(\Rightarrow\frac{EC}{AC}=1-\frac{AE}{AC}\)(1)

ta kẻ:\(EH\perp AD\left(H\in AD\right)\)từ đó EH sẽ là đường cao của tam giác AED cân tại E

\(\Rightarrow AH=HE\)(TC)

\(\Delta AHE\) VUÔNG TẠI H,theo định lý Pytago TA CÓ:

\(AH^2+HE^2=AE^2\)

TA có tính chất sau:trong tam giác vuông có 1 góc bằng 30 độ thì cạnh đối diện với góc 30 độ bằng nửa cạnh huyền

\(\Rightarrow AE=2HE\)(áp dụng vào tam giác AHE)

\(\Rightarrow AH^2+HE^2=4HE^2\)

\(\Rightarrow AH^2=3HE^2\)

MÀ  \(AH+HE=AD;AH=AE\Rightarrow2AH=AD\Rightarrow4AH^2=AD^2\)

\(\Rightarrow4.AH^2=12HE^2\Rightarrow AD^2=3.\left(4.HE^2\right)\)

\(\Rightarrow AD^2=3.AE^2\)(DO HE=2AE)

\(\Rightarrow AD=\sqrt{3}AE\)(do cạnh của tam giác luôn lớn hơn 0)

ta thày vào (1),có:​

\(\frac{AE}{AB}=1-\frac{AE}{AC}\Rightarrow\frac{\sqrt{3}AE}{AB}=\sqrt{3}-\frac{\sqrt{3}AE}{AC}\)

\(\Rightarrow\frac{AD}{AB}=\sqrt{3}-\frac{AD}{AC}\)
\(\Rightarrow\frac{AD}{AB}+\frac{AD}{AC}=\sqrt{3}\)

\(\Rightarrow AD.\left(\frac{1}{AB}+\frac{1}{AC}\right)=\sqrt{3}\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{3}}{AD}\)(ĐPCM)

20 tháng 4 2019

A A B B C H D

Từ D kẻ DH // AC 

Do DH // AC : \(\Rightarrow\) \(\widehat{D_1}=\widehat{A_2}=60^0\)

Vì AD là đường phân giác \(\widehat{BAC}\):

\(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=60^0\)

\(\Rightarrow\)\(\widehat{D_1}=\widehat{A_1}=60^0\)

\(\Rightarrow\) \(\Delta AH\text{D}\) là tam giác đều

\(\Rightarrow\)\(AH=H\text{D}=A\text{D}\)

Do DH //  AH :

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{H\text{D}}{AC}\)

       \(\frac{AB-AH}{AB}=\frac{H\text{D}}{AC}\)

 \(\frac{AB}{AB}-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1=\frac{H\text{D}}{AC}+\frac{AH}{AB}\)

\(1=\frac{A\text{D}}{AC}+\frac{A\text{D}}{AB}\) ( VÌ AH = HD = AD )

\(1=A\text{D}.\left(\frac{1}{AC}+\frac{1}{AB}\right)\)

\(\frac{1}{A\text{D}}=\frac{1}{AC}+\frac{1}{AB}\)

\(\Rightarrow\)\(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{A\text{D}}\)( ĐPCM )

14 tháng 4 2021

Tam giác ABC cậu tự vẽ nhó =(

Kẻ DE//AB(E∈AC)DE//AB(E∈AC)

Vì AD là phân giác của ˆBACBAC^

⇒ˆBAD=ˆCAD⇒BAD^=CAD^

Vì DE//ABDE//AB

⇒ˆADE=ˆBAD⇒ADE^=BAD^

⇒ˆADE=ˆCAD⇒ADE^=CAD^

⇒ΔDAE⇒ΔDAEcân tại EE

⇒DE=AE⇒DE=AE

Đặt DE=AE=aDE=AE=a

Vì DE//ABDE//ABnên theo hệ quả của định lí Talet ,ta có :

DEAB=CEACDEAB=CEAC

⇒aAB=AC−AEAC⇒aAB=AC−AEAC

⇒aAB=1−aAC⇒aAB=1−aAC

⇒aAB+aAC=1⇒aAB+aAC=1

⇒1AB+1AC=1a⇒1AB+1AC=1a

Mà 1AB+1AC=1AD1AB+1AC=1AD

⇒1a=1AD⇒1a=1AD

⇒a=AD⇒a=AD

⇒DE=AE=AD⇒DE=AE=AD

⇒ΔDAE⇒ΔDAEđều

⇒ˆCAD=60o⇒CAD^=60o

⇒ˆBAC=2ˆCAD=2.60o=120o⇒BAC^=2CAD^=2.60o=120o

Vậy ˆBAC=120o

27 tháng 3 2017

A B C D E F

 + qua B,C dựng lần lượt các đường thẳng song song với AC,AB lần lượt cắt AD tại E,F 
- vì AC//BE áp dụng hệ quả định lí Talet ta có 
DB/DC = DE/DA 
áp dụng tính chất của tỉ lệ thức ta có 
(DB + DC)/DC = (DE + DA)/DA hay BC/DC = AE/AD = AB/AD (tam giác ABE đều) 
hay BC/DC = AB/AD hay DC/BC = AD/AB (1) 
- tương tự AB//CF ta cũng có 
DB/DC = AD/DF 
=>DB/(DC + DB) = AD/(AD + DF) hay DB/BC = AD/AF = AD/AC (tam giác AFC đều) 
hay DB/BC = AD/AC (2) 
- cộng (1) và (2) vế với vế ta có 
DC/BC +DB/BC = AD/AB + AD/AC 
hay 
BC/BC = AD(1/AB + 1/AC) 
hay 1/AD = 1/AB + 1/AC .

27 tháng 3 2017

Giải:

A B D E F C

Qua \(B,C\)dựng lần lượt các đường thẳng song song với \(AC,AB\)lần lượt cắt \(AD\)tại \(E,F\)

Vì AC//BE áp dụng hệ quả định lí Talet ta có:

\(\frac{DB}{DC}=\frac{DE}{DA}\)

Áp dụng tính chất của tỉ lệ thức ta có:

\(\frac{DB+DC}{DC}=\frac{DE+DA}{DA}\)hay \(\frac{BC}{DC}=\frac{AE}{AD}=\frac{AB}{AD}\)(tam giác \(ABE\)đều)

Hay \(\frac{BC}{DC}=\frac{AB}{AD}\)hay \(\frac{DC}{BC}=\frac{AD}{AB}\left(1\right)\)

Tương tự: AB//CF ta cũng có:

\(\frac{DB}{DC}=\frac{AD}{DF}\)

\(\Rightarrow\frac{DB}{DC+DB}=\frac{AD}{AD+DF}\)hay \(\frac{DB}{BC}=\frac{AD}{AF}=\frac{AD}{AC}\)(tam giác \(AFC\)đều)

Hay \(\frac{DB}{BC}=\frac{AD}{AC}\left(2\right)\)

Cộng (1) và (2) vế với vế ta có:

\(\frac{DC}{BC}+\frac{DB}{BC}=\frac{AD}{AB}+\frac{AD}{AC}\)

Hay \(\frac{BC}{BC}=AD\left(\frac{1}{AB}+\frac{1}{AC}\right)\)

Hay \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
8 tháng 3 2018

1/Tôi chỉ bt 1 câu thui thông cảm :)

P=\(\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{x^2-1}\)       ĐK:\(\hept{\begin{cases}x-1\ne0\\x+1\ne\\x^2-1\ne0\end{cases}1}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\\x\ne1\end{cases}}\)

P=\(\frac{x\left(x+1\right)+4\left(x-1\right)+4-6x}{\left(x-1\right).\left(x+1\right)}\) 

=\(\frac{x^2+x+4x-4+4-6x}{\left(x-1\right)\left(x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)

=\(\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

^^ học tốt!

8 tháng 3 2018

1/

\(đkxđ\Leftrightarrow x\ne\pm1\)

\(P=\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{x^2-1}\)

\(=\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+x+4x-4+4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

2/

D C E A B 1 2

Kẻ \(DE//AB\left(E\in AC\right)\)

\(\Rightarrow\frac{DE}{AB}=\frac{EC}{AC}\)

\(\Delta ADE\)đều (vì .............)\(\Rightarrow AD=AE=DE\)

\(\Rightarrow\frac{AD}{AB}=\frac{AC-AE}{AC}\)mà \(AE=AD\)

\(\Rightarrow\frac{AB}{AB}=1-\frac{AD}{AC}\)

\(\Rightarrow\frac{AD}{AB}+\frac{AD}{AC}=1\)

\(\Rightarrow AD\left(\frac{1}{AB}+\frac{1}{AC}\right)=1\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\left(ĐPCM\right)\)