\(\widehat{BAC=120^o}\),AD là đường phân giác của 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

A A B B C H D

Từ D kẻ DH // AC 

Do DH // AC : \(\Rightarrow\) \(\widehat{D_1}=\widehat{A_2}=60^0\)

Vì AD là đường phân giác \(\widehat{BAC}\):

\(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=60^0\)

\(\Rightarrow\)\(\widehat{D_1}=\widehat{A_1}=60^0\)

\(\Rightarrow\) \(\Delta AH\text{D}\) là tam giác đều

\(\Rightarrow\)\(AH=H\text{D}=A\text{D}\)

Do DH //  AH :

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{H\text{D}}{AC}\)

       \(\frac{AB-AH}{AB}=\frac{H\text{D}}{AC}\)

 \(\frac{AB}{AB}-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1=\frac{H\text{D}}{AC}+\frac{AH}{AB}\)

\(1=\frac{A\text{D}}{AC}+\frac{A\text{D}}{AB}\) ( VÌ AH = HD = AD )

\(1=A\text{D}.\left(\frac{1}{AC}+\frac{1}{AB}\right)\)

\(\frac{1}{A\text{D}}=\frac{1}{AC}+\frac{1}{AB}\)

\(\Rightarrow\)\(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{A\text{D}}\)( ĐPCM )

27 tháng 9 2020

Ta có: SAED = 1/14SABC => ED = 1/14BC

SAFD = 7/50SABC => FD = 7/50BC

=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC

=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)

Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC

SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC

=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)

Gọi I, J lần lượt là trung điểm các cạnh AB, AC

Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4

Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF

Mà ∆IBF cân tại I, ∆AJF cân tại J

=> ^IFB = ^FAJ            (1)

∆IAF cân tại I => ^IFA = ^IAF                   (2)

Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.

27 tháng 3 2017

A B C D E F

 + qua B,C dựng lần lượt các đường thẳng song song với AC,AB lần lượt cắt AD tại E,F 
- vì AC//BE áp dụng hệ quả định lí Talet ta có 
DB/DC = DE/DA 
áp dụng tính chất của tỉ lệ thức ta có 
(DB + DC)/DC = (DE + DA)/DA hay BC/DC = AE/AD = AB/AD (tam giác ABE đều) 
hay BC/DC = AB/AD hay DC/BC = AD/AB (1) 
- tương tự AB//CF ta cũng có 
DB/DC = AD/DF 
=>DB/(DC + DB) = AD/(AD + DF) hay DB/BC = AD/AF = AD/AC (tam giác AFC đều) 
hay DB/BC = AD/AC (2) 
- cộng (1) và (2) vế với vế ta có 
DC/BC +DB/BC = AD/AB + AD/AC 
hay 
BC/BC = AD(1/AB + 1/AC) 
hay 1/AD = 1/AB + 1/AC .

27 tháng 3 2017

Giải:

A B D E F C

Qua \(B,C\)dựng lần lượt các đường thẳng song song với \(AC,AB\)lần lượt cắt \(AD\)tại \(E,F\)

Vì AC//BE áp dụng hệ quả định lí Talet ta có:

\(\frac{DB}{DC}=\frac{DE}{DA}\)

Áp dụng tính chất của tỉ lệ thức ta có:

\(\frac{DB+DC}{DC}=\frac{DE+DA}{DA}\)hay \(\frac{BC}{DC}=\frac{AE}{AD}=\frac{AB}{AD}\)(tam giác \(ABE\)đều)

Hay \(\frac{BC}{DC}=\frac{AB}{AD}\)hay \(\frac{DC}{BC}=\frac{AD}{AB}\left(1\right)\)

Tương tự: AB//CF ta cũng có:

\(\frac{DB}{DC}=\frac{AD}{DF}\)

\(\Rightarrow\frac{DB}{DC+DB}=\frac{AD}{AD+DF}\)hay \(\frac{DB}{BC}=\frac{AD}{AF}=\frac{AD}{AC}\)(tam giác \(AFC\)đều)

Hay \(\frac{DB}{BC}=\frac{AD}{AC}\left(2\right)\)

Cộng (1) và (2) vế với vế ta có:

\(\frac{DC}{BC}+\frac{DB}{BC}=\frac{AD}{AB}+\frac{AD}{AC}\)

Hay \(\frac{BC}{BC}=AD\left(\frac{1}{AB}+\frac{1}{AC}\right)\)

Hay \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)

11 tháng 3 2017

a) Xét tam giác BAD và tam giác MCD có:

góc BAD = MCD (gt)

góc ADB = CDM (2 góc đối đỉnh)

=> 2 tam giác trên đồng dạng => AB/CM = DB/DM => AB.DM = DB.CM

b) Tam giác BAD đồng dạng vói MCD (cmt) => góc ABD = CMD

Xét tam giác ABD và AMC có: góc BAD = MAC (gt)

                                            góc ABD = ACM (cmt)

=> 2 tam giác trên đồng dạng

Còn ý d bạn dùng định lý Ceva nha.


A B c D M

11 tháng 3 2017

chủ yếu là ý c thôi

26 tháng 3 2020

Mình nghĩ là cái chỗ `đường phân giác ngoài’ sai đề còn nếu là đường phân giác trong thì là :

Áp dụng tính chất đường phân giác của tam giác ta được :

AB/AC=BI/CI mà CI=BC-BI=8-4=4

=> AB/AC=4/4=1

Vậy tỉ số AB/AC=1

8 tháng 3 2018

1/Tôi chỉ bt 1 câu thui thông cảm :)

P=\(\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{x^2-1}\)       ĐK:\(\hept{\begin{cases}x-1\ne0\\x+1\ne\\x^2-1\ne0\end{cases}1}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\\x\ne1\end{cases}}\)

P=\(\frac{x\left(x+1\right)+4\left(x-1\right)+4-6x}{\left(x-1\right).\left(x+1\right)}\) 

=\(\frac{x^2+x+4x-4+4-6x}{\left(x-1\right)\left(x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)

=\(\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

^^ học tốt!

8 tháng 3 2018

1/

\(đkxđ\Leftrightarrow x\ne\pm1\)

\(P=\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{x^2-1}\)

\(=\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+x+4x-4+4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

2/

D C E A B 1 2

Kẻ \(DE//AB\left(E\in AC\right)\)

\(\Rightarrow\frac{DE}{AB}=\frac{EC}{AC}\)

\(\Delta ADE\)đều (vì .............)\(\Rightarrow AD=AE=DE\)

\(\Rightarrow\frac{AD}{AB}=\frac{AC-AE}{AC}\)mà \(AE=AD\)

\(\Rightarrow\frac{AB}{AB}=1-\frac{AD}{AC}\)

\(\Rightarrow\frac{AD}{AB}+\frac{AD}{AC}=1\)

\(\Rightarrow AD\left(\frac{1}{AB}+\frac{1}{AC}\right)=1\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\left(ĐPCM\right)\)