Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E N F
a, chỉ cần cm ME ko song song với BC
b, Kẻ EF song song với AB
Xét tg ABC có EF // AB => \(\hept{\begin{cases}\frac{BF}{BC}=\frac{AE}{AC}=\frac{1}{4}\left(1\right)\\\frac{AB}{EF}=\frac{AC}{EC}=\frac{4}{3}\end{cases}}\)
Mà M là trung điểm AB nên \(MB=MA=\frac{1}{2}AB\)=>\(\frac{MB}{EF}=\frac{2}{3}\)
Do AB // EF mà M thuộc AB => MB // EF
=> \(\frac{NB}{NF}=\frac{MB}{EF}=\frac{2}{3}\)=>\(\frac{NB}{BF}=2\)(2)
Từ (1) và (2) => \(\frac{NB}{BC}=\frac{1}{2}\)
Câu này chỉ cần áp dụng định lý Ta let:
a. Do E không là trung điểm AC nên ME không song song BC. Vậy ME cắt BC.
b. Kẻ EH // BC, H thuộc AB. Áp dụng định lý Talet: \(\frac{AE}{AC}=\frac{AH}{AB}=\frac{HE}{BC}=\frac{1}{4}\left(1\right)\)
Lại do M là trung điểm AB nên H là trung điểm MA. Áp dụng Talet:
\(\frac{HE}{NB}=\frac{MH}{MB}=\frac{MH}{MA}=\frac{1}{2}\left(2\right)\)
Từ (1) và (2) ta suy ra BC = 2BN.
Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33
A B C M K D E
a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)
\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )
Mà : \(MC=MB\) ( Do M là trung điểm của BC )
\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )
b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )
Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)
\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)
Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)
\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)
c) Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :
+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)
+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)
\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )
Nên : E là trung điểm của KD ( đpcm )
d) Ta có : \(KD=10\Rightarrow KE=5\)
Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)
\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)
Vậy : \(BC=16cm\)