\(\Delta ABC\)có \(\widehat{B}\)=2\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

a) xét tgiac vuông BDC và tgiac vuông CEB có:

BC là cạnh chung

góc B=góc C(gt)

=> tgiac vuông BDC=tgiac vuông ICD( cạnh huyền-góc nhọn)(góc-cạnh-góc í)

b) ta có tgiac BDC= tgiac IBC + tgiac ICD

và     tgiac CEB= tgiac IBC +tgiac IBE

mà tgiac BDC=tgiacCEB(cmt)

=> tgiac ICD=tgiac IBE 

=> góc IBE= góc ICD( hai góc tương ứng)

21 tháng 12 2016

mog giúp dc bn nha

3 tháng 6 2018

Cách 1:

Kẻ \(IH\perp AB,IK\perp AC\).Ta có \(\Delta IHE=\Delta IKD\)(cạnh huyền-cạnh góc vuông)

 \(\Rightarrow\widehat{IEH}=\widehat{IDK}\)          (1)

Xét 4 trường hợp :

a) H thuộc đoạn BE ,K thuộc đoạn CD ( hình a)

Từ (1) \(\Rightarrow\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\) ,do đó \(\widehat{C}=\widehat{B}\)

A E H I D K B C Hình a

A K D E H B C I Hình b

b) H thuộc đoạn BE,K thuộc đoạn AD.Chứng min tương tự như phần a ta được \(\widehat{C}=\widehat{B}\) 

c)  H thuộc đoạn AE ,K thuộc đoạn AD (hình b )

Từ (1) ta có : 

\(\widehat{A}+\frac{\widehat{C}}{2}=A+\widehat{\frac{B}{2}}\)

\(\Rightarrow\widehat{A}=\widehat{\frac{B}{2}}+\widehat{\frac{C}{2}}\)

\(\Rightarrow2\widehat{A}=\widehat{B}+\widehat{C}\)

\(\Rightarrow3\widehat{A}=\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}=60^o,\widehat{B}+\widehat{C}=120^o.\)

d) H thuộc đoạn AE,K thuộc đoạn CD.Chứng min tương tự như phần c ta được : \(\widehat{B}+\widehat{C}=120^o\).

Cách 2

Không mất tín tổng quát,giả sử \(AD\ge AE\).Xét 2 trường hợp :

a) Trường hợp AD= AE ( hình c)

\(\Delta ADI=\Delta AEI\left(c.c.c\right)\Rightarrow\widehat{ADI}=\widehat{AEI}\)

\(\Delta ADB\)và \(\Delta AEC\) có \(\widehat{A}\) chung,\(\widehat{ADI}=\widehat{AEI}\)nên \(\widehat{B}_1=\widehat{C}_1.\)

Do đó \(\widehat{B}=\widehat{C}\)

A E D B C I 1 2 1 2 Hình c

A F E B C D I 1 1 1 Hình d

b) Trường hợp AD>AE.Lấy F trên AD sao cho À=AE (hình d)

\(\Delta AFI=\Delta AEI\left(c.g.c\right)\Rightarrow IF=IE,\widehat{F_1}=\widehat{E}_1\)

Do IE=ID nên IF =ID,do đó \(\widehat{F_1}=\widehat{D_1}\).

\(\Rightarrow\widehat{D_1}=\widehat{E_1}\),tức là \(\widehat{A}+\widehat{\frac{B}{2}}=\widehat{B}+\frac{\widehat{C}}{2}.\)

Biến đổi như cách 1,ta được \(\widehat{B}+\widehat{C}=120^o\).

P/s:Hình xấu :)