Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.
a, xét tam giác AHB và tam giác AHC có : AH chung
góc AHB = góc AHC = 90 do ...
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác AHB = tam giác AHC (ch - cgv)
b, tam giác AHB = tam giác AHC (câu a)
=> góc BAH = góc CAH (đn)
có HD // AC (gt) => góc DHA = góc HAC (slt)
=> góc DHA = góc DAH
=> tam giác DAH cân tại D (tc)
d) Gọi M là giao điểm của HA và KI
\(\Delta\)HKB = \(\Delta\)HIC ( theo c)
=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )
=> ^BHA - ^BHK = ^CHA - ^CHI
=> KHA = ^IHA hay ^KHM = ^IHM (1)
Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung
=> \(\Delta\)IHM = \(\Delta\)KHM
=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ
=> ^HMK = ^HMI = 90 độ
hay HA vuông KI
mà HA vuông BC
=> KI // BC
A B C H
a) Xét tam giác AHB và tam giác AHC có:
AH chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)
AB=AC (tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC (đpcm)
b) Xét tam giác ABC cân tại A có AH là đường cao
=> AH trùng với đường trung tuyến
=> H là trung điểm BC => HB=HC (đpcm)
bạn tự vẽ hình nhé ì bạn đang cần gấp nên mk cx k vẽ kẻo mất thời gian
anh tự vẽ hình :
a, xét tam giác AHB và tam giác AHC có : AH chung
AB = AC do tam giác ABC cân tại A (gt)
góc AHB = góc AHC do AH | BC (gt)
=> tam giác AHB = tam giác AHC (ch - cgv)
b, tam giác ABC cân tại A (gt) => góc ABC = góc ACB (tc)
góc ABD + góc ABC = 180o (kb)
góc ACE + góc ACB = 180o (kb)
=> góc ABD = góc ACE
xét tam giác ABD và tam giác ACE có : AB = AC (câu a)
DB = CE (gt)
=> tam giác ABD = tam giác ACE (c - g - c)
=> AD = AE (đn)
=> tam giác ADE cân tại A (đn)
xét tan giác ABH và ACH
AB=AC (gt)
BH=BC (gt)
AH là cạnh chung
vây tam giác ABH=ACH (c.c.c)
vậy goc AHB=AHC (2 góc tương ứng)
vì AHB+AHC=180 (kề bù)
Mà AHB=AHC
vậy AHB=AHC=180:2=90
vậy AH vuông góc với BC
vi CB vuông góc Cx (gt)
AH vuông góc BC (cmt)
vậy Cx//AH
tam giác vuông EBC có E+B=90
tam giác vuông AHB có BAH+ B=90
Vậy BAH=BEC hay BAH=AEC
A B C H D 35°
GT| \(\widehat{BAC}=90\text{°}\) \(AH\perp BC\)tại H Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH \(\widehat{BAH}=35\text{°}\) |
KL | AB // DH |
Xét \(\Delta AHB\&\Delta DBH\) ta có :
AH = BD ( hình vẽ )
BH cạnh chung
AB = HD ( gt )
=> \(\Delta AHB=\Delta DBH\)( c.c.c )
b) Ta có :
\(\Delta AHB=\Delta DBH\) ( cmt )
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT
=> AB // DH
a,xét tam giac AHB va AHC.Ta có
góc AHB=góc AHC (vi = 90 độ)
cạnh AB=AC(vì ABC cân tại A)
góc B=góc C (vì ABC cân tại A)
-> tam giác AHB=AHC (cạnh huyền-góc nhọn)
-> goc MAH=gocNAH
b, xét tam giac AMH va ANH. có
goc ANH=góc AMH (90 độ)
cạnh AH chung
goc MAH=goc NAH(cm trên)
->tam giac AMH=ANH (cạnh huyền góc nhọn)
->AM=AN
->AMN là tam giác cân tại A