\(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC. CMR \(\Delta AH...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Xét tg AHB và tg AHC,ta có:

AH chung

gBAH=gCAH(tia phân giác của góc A cắt BC tại H)

AB=AC(gt)

=>tg AHB =tg AHC(c-g-c)

Xét tg ABC,có:AB=AC (gt)

=>tg ABC cân tại A

mà AH là tia phân giác

=>AH là đường cao

=>AH vuông góc vs BC

Ta có:g BAH+g ABH=g AHB=90*

và gDHB+gDBH=gBDH=90*

=>góc HAB = góc BHD

25 tháng 12 2018

gợi ý phần c

gọi F là giao điểm của AH và DE

Xét tg ADH và tg AEH,có

AH chung

ADH=AEH=90

DAH=EAH

=>tg ADH =tg AEH(ch-gn)

=>AD=AE

=>tg ADE cân tại A

mà AF là tia phân giác

=>AF vuông góc vs DE

ta có BHF=EFH=90

=>DE//BC

p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.

30 tháng 4 2019

bạn vào câu hỏi tương tự nha

30 tháng 4 2019

a, xét tam giác AHB và tam giác AHC có : AH chung

góc AHB = góc AHC = 90 do ...

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác AHB = tam giác AHC (ch - cgv)

b, tam giác AHB = tam giác AHC (câu a)

=> góc BAH = góc CAH (đn)

có HD // AC (gt) => góc DHA = góc HAC (slt)

=> góc DHA = góc DAH 

=> tam giác DAH cân tại D (tc)

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

12 tháng 2 2019

bạn tự vẽ hình nhé ì bạn đang cần gấp nên mk cx k vẽ kẻo mất thời gian

12 tháng 2 2019

anh tự vẽ hình :

a, xét tam giác AHB và tam giác AHC có : AH chung

AB = AC do tam giác ABC cân tại A (gt) 

góc AHB = góc AHC do AH | BC (gt)

=> tam giác AHB = tam giác AHC (ch - cgv)

b, tam giác ABC cân tại A (gt) => góc ABC = góc ACB (tc)

góc ABD + góc ABC = 180o (kb)

góc ACE + góc ACB = 180o (kb)

=> góc ABD = góc ACE 

xét tam giác ABD và tam giác ACE có : AB = AC (câu a)

DB = CE (gt)

=> tam giác ABD = tam giác ACE (c - g - c)

=> AD = AE (đn)

=> tam giác ADE cân tại A (đn)

xét tan giác ABH và ACH

AB=AC (gt)

BH=BC (gt)

AH là cạnh chung

vây tam giác ABH=ACH (c.c.c)

vậy goc AHB=AHC (2 góc tương ứng)

vì AHB+AHC=180 (kề bù)

Mà AHB=AHC

vậy AHB=AHC=180:2=90

vậy AH vuông góc với BC

vi CB vuông góc Cx (gt)

AH vuông góc BC (cmt)

vậy Cx//AH

tam giác vuông EBC có E+B=90

tam giác vuông AHB có BAH+ B=90

Vậy BAH=BEC hay BAH=AEC

29 tháng 11 2018

A B C H D 35°

GT| \(\widehat{BAC}=90\text{°}\)
\(AH\perp BC\)tại H 
Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH 
\(\widehat{BAH}=35\text{°}\)
KL | 
AB // DH 

Xét \(\Delta AHB\&\Delta DBH\) ta có :

AH = BD ( hình vẽ )

BH cạnh chung 

AB = HD ( gt )

=> \(\Delta AHB=\Delta DBH\)( c.c.c )

b) Ta có :

\(\Delta AHB=\Delta DBH\) ( cmt )

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT 

=> AB // DH
 

22 tháng 1 2016

a,xét tam giac AHB va AHC.Ta có

góc AHB=góc AHC (vi = 90 độ)

cạnh AB=AC(vì ABC cân tại A)

góc B=góc C (vì ABC cân tại A)

-> tam giác AHB=AHC (cạnh huyền-góc nhọn)

-> goc MAH=gocNAH

b, xét tam giac AMH va ANH. có

goc ANH=góc AMH (90 độ)

cạnh AH chung

goc MAH=goc NAH(cm trên)

->tam giac AMH=ANH (cạnh huyền góc nhọn)

->AM=AN

->AMN là tam giác cân tại A