Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,xét tam giac AHB va AHC.Ta có
góc AHB=góc AHC (vi = 90 độ)
cạnh AB=AC(vì ABC cân tại A)
góc B=góc C (vì ABC cân tại A)
-> tam giác AHB=AHC (cạnh huyền-góc nhọn)
-> goc MAH=gocNAH
b, xét tam giac AMH va ANH. có
goc ANH=góc AMH (90 độ)
cạnh AH chung
goc MAH=goc NAH(cm trên)
->tam giac AMH=ANH (cạnh huyền góc nhọn)
->AM=AN
->AMN là tam giác cân tại A
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI
tự kẻ hình nghen :33333
a) Xét tam giác AHB và tam giác AHC có
AH chung
AHC=AHB(=90 độ)
AB=AC(gt)
=> tam giác AHB= tam giac AHC(ch-cgv)
b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )
Xét tam giác AMH và tam giác ANH có
A1=A2(cmt)
AH chung
AMH=ANH(=90 độ)
=> tam giấcMH=tam giác ANH(ch-gnh)
=> AM=AN( hai cạnh tương ứng)
=> tam giác AMN cân A
- Ta có : \(\Delta ABC\) cân tại A .
=> AB = AC ( Tính chất tam giác cân )
=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )
- Xét \(\Delta AHB\) và \(\Delta AHC\) có :
\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)
=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )
b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )
=> BH = CH ( cạnh tương ứng )
- Xét \(\Delta HMB\) và \(\Delta HNC\) có :
\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )
=> MB = NC ( cạnh tương ứng )
Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)
Mà AB = AC (tam giác cân )
=> \(AM=AN\)
- Xét \(\Delta AMN\) có : AM = AN ( cmt )
=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )
c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )
=> \(\widehat{AMN}=\widehat{ANM}\)
Mà \(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)
=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)
=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )
- Ta có : \(\Delta ABC\) cân tại A .
=> \(\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)
=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )
Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)
Mà 2 góc trên ở vị trí đồng vị .
=> MN // BC ( Tính chất 2 đoạn thẳng song song )
d, ( Hình vẽ câu trên nha )
- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :
\(AH^2+BH^2=AB^2\)