\(\Delta ABC\) vuông tại A, đ/cao AH, trung tuyến AM

a) cm

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Ta có hình vẽ:

A B C D E H M

a/ Ta có: tam giác ABC vuông tại A

AM là trung tuyến.

=> AM = MB = MC = 1/2 BC.

Ta có: AM = MC => tam giác AMC cân tại M

=> góc MAC = góc MCA.

Mà ta lại có: góc MCA = góc HAB (vì cùng phụ với góc ABH)

===> góc HAB = góc MAC (đpcm).

b/ Đặt AM và DE cắt nhau tại I

và AH; DE cắt nhau tại N

Ta có: góc ADE + góc AED = 900

Mà tam giác ABC vuông tại A

và D;E là hình chiếu của H lên AB;AC.

=> ADHE là hình chữ nhật

Mà AH; DE là đường chéo của HCN ADHE

=> AH = DE

và AN = NH = 1/2 AH; DN = NE = 1/2 DE

Mà AH = DE => AN = ND

=> tam giác AND cân

=> góc NDA = góc NAD (hay góc ADE = góc HAB)

Mà góc ADE + góc AED = 900

=> góc HAB + góc AED = 900

Mà góc HAB = góc MAC (hay góc IAE) (cmt)

=> góc IAE + góc AED = 900

Xét tam giác IAE có:

góc IAE + góc AED + góc AIE = 1800

Mà góc IAE + góc AED = 900 => góc AIE = 900

Vậy AM vuông góc vs DE.

===> đpcm.

a) Xét ∆ vuông ABC có 

AM là trung tuyến 

=> AM = BM = CM 

=> ∆AMC cân tại M 

=> MAC = MCA 

Xét ∆ABH có : 

BHA + BAH + ABH = 180° 

=> BAH + ABH = 90° 

Xét ∆ABC có : 

ABC + BCA + BAC = 180° 

=> ABC + ACB = 90° 

=> BAH = MCA 

Mà MAC = MCA (cmt)

=> BAH = MAC 

b) Gọi I là giao điểm DE và AH 

Xét tứ giác DHEA có : 

BAC = 90° (gt)

MDA = 90° ( MD\(\perp\)AB )

HEA = 90° ( HE\(\perp\)AC)

=> DHEA là hình chữ nhật 

=> I là trung điểm DE và HA 

=> DI = IA 

=> ∆IDA cân tại I

=> IDA = IAD (1)

Vì MAC = MCA (2) (cmt)

Ta có : 

DAI + MAC = 90° 

MCA + MAC = 90° 

=> DAI = MCA ( cùng phụ với MAC )(3)

Từ (1) (2)(3) 

=> DAI = MAC = MCA 

Vì I là trung điểm DE 

=> ∆IAE cân tại I 

=> IAE = IEA 

Gọi giao điểm DE,AM là O 

Xét ∆ADE có : 

DAE + ADE + DEA = 180° 

=> ADE + DEA = 90° .

Mà IAE = IEA (cmt)

MAC = ADI (cmt)

=> MAE + IEA = 90° 

Xét ∆IAE có : 

IAE + IEA + AIE = 180° 

=> AIE = 90° 

Hay AM \(\perp\)DE(dpcm)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a,Ta có :

\(AH\perp BC\left(GT\right)\Rightarrow\widehat{HAB}+\widehat{B}=90^o\)

Mà \(\widehat{B}+\widehat{C=90^o}\)( Trong tam giác vuông 2 góc nhọn phụ nhau )

\(\Rightarrow\widehat{HAB}=\widehat{C}\left(1\right)\)

Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\)có :

 AM là trung tuyến ứng với cạnh huyền BC ( GT )

\(\Rightarrow AM=MC=\frac{1}{2}BC\)( Tính chất )

Vì \(AM=MC\)

\(\Rightarrow\Delta AMC\)cân tại M ( Định nghĩa )

\(\Rightarrow\widehat{MAC}=\widehat{C}\)( Tính chất ) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{HAB}=\widehat{MAC}\left(DPCM\right)\)

29 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc MCA

Ta có: ADHE là hình chữ nhật

nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: Để AM=DE thì M trùng với H

=>ΔABC cân tại A

=>AB=AC

12 tháng 11 2019

A C B M H E D O I

Cm: a) Ta có: BA \(\perp\)AC (gt)

                        HD // AB (gt)

=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)

Ta lại có: AC \(\perp\)AB (gt)

   HE // AC (gt)

=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)

Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)

  \(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)

=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2) 
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)

hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)

=> \(AM\perp DE\)(Đpcm)

c) (thiếu đề)

5 tháng 9 2016

Bạn tự vẽ hình

a/ Dễ thấy ADHE là hình chữ nhật vì góc A = góc E = góc D = 90 độ

=> góc ADE = góc AHE (t/c hình chữ nhật)

Mà góc AHE + góc EHC = 90 độ ; góc ECH + góc EHC = 90 độ

=> Góc AHE = góc ECH hay góc C = góc ADE

b/ Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/677639.html