K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5

a) Xét hai tam giác vuông: \(\Delta ABC\) và \(\Delta HBA\) có:

\(\widehat{B}\) chung

\(\Rightarrow\Delta ABC\)  ∽\(\Delta HBA\left(g-g\right)\)

\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)

\(\Delta ABC\) vuông tại A (gt)

\(\Rightarrow BC^2=AB^2+AC^2\left(Pythagore\right)\)

\(=9^2+12^2\)

\(=225\)

\(\Rightarrow BC=15\left(cm\right)\)

\(\Rightarrow\dfrac{12}{AH}=\dfrac{15}{9}\)

\(\Rightarrow AH=\dfrac{9.12}{15}=7,2\left(cm\right)\)

b) Xét hai tam giác vuông: \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ \(\widehat{ABC}\))

\(\Rightarrow\Delta AHB\)  ∽\(\Delta CHA\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{CH}=\dfrac{HB}{AH}\)

\(\Rightarrow AH^2=HB.HC\)

c) Do \(\Delta ABC\)  ∽\(\Delta HBA\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5,4\left(cm\right)\)

Do \(BE\) là tia phân giác của \(\widehat{ABC}\) (gt)

\(\Rightarrow\widehat{ABE}=\widehat{CBE}\)

\(\Rightarrow\widehat{ABE}=\widehat{HBF}\)

Xét hai tam giác vuông: \(\Delta ABE\) và \(\Delta HBF\) có:

\(\widehat{ABE}=\widehat{HBF}\left(cmt\right)\)

\(\Rightarrow\Delta ABE\)  ∽\(\Delta HBF\left(g-g\right)\)

\(\Rightarrow\dfrac{S_{ABE}}{S_{HBF}}=\left(\dfrac{AB}{HB}\right)^2=\left(\dfrac{9}{7,2}\right)^2=\dfrac{25}{16}\)

a: Xet ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồg dạng với ΔHBA

b: ΔABC vuông tại A mà AH là đường cao

nên HA^2=HB*HC

c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co

góc ACD=góc HCE

=>ΔCAD đồng dạng với ΔCHE

=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn 

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

8 tháng 5 2017

Hình thì bạn tự vẽ nha

a)Xét tam giác ABC và tam giá HBA, có:

Góc B chung

Góc BAC = góc BHA 

--> Tam giác ABC ~ Tam giác HBA

b)Xét tam giác AHB và tam giác HCA, có

Góc A - góc H

Góc ABH = Góc AHC

-->tam giác AHB ~ tam giác AHC

-->AH/HB = HC/AH

-->AH.AH = HB.HC

-->AH^2=HB.HC(đpcm)

c)

+) Áp dụng định lý PTG vào tam giác vuông ABC, có :

BC^2=AB^2 + AC^2

<--> 6^2 + 8^2 = 100

--> BC = 10(cm)

+)Vì tam giác ABC ~ Tam giác HBA :

AB/HB = BC/BA = AC/HA

-)AB/HB = BC/BA

= 6/HB =10/6

--> HB = 6.6/10

-->HB = 3,6(cm)

-)BC/BA =AC/HA

=10/6 = 8/HA

--> HA = 6.8/10

--> HA = 4,8 (cm)

d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên

là đc tỉ số đồng dạng ạ 

8 tháng 5 2017

xét tam giác ABC có BC2=ab2 + ac2

thay số BC2=62+82

BC2=36+64=100

BC=10(cm)

còn lại mình không bít,xin lỗi

7 tháng 5 2021

Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)

7 tháng 5 2021

Giúp mình với 

9 tháng 5 2017

a)

Xét \(\Delta ABC\)và  \(\Delta HBA\) có:

\(\widehat{A}=\widehat{H}=90^o\)

\(\widehat{B}\)là góc chung

\(\Rightarrow\Delta ABC\)đồng dạng với  \(\Delta HBA\)

\(\RightarrowĐpcm\)

9 tháng 5 2017

b)

Xét \(\Delta ABC\) và  \(\Delta HAC\) có:

\(\widehat{A}=\widehat{H}=90^o\)

\(\widehat{C}\)là góc chung

\(\Rightarrow\Delta ABC\)đồng dạng với  \(\Delta HAC\)

\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)

Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)

\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)