K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=13cm

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AC chung

AB=AD

Do đo: ΔABC=ΔADC

c: Xét ΔCDB có

A là trung điểm của bD

AE//CB
Do đó: E là trung điểm của CD

Ta có: ΔCAD vuông tại A

mà AE là đường trung tuyến

nên EA=EC
hay ΔEAC cântại E

d: Gọi giao điểm của BE và AC là G

=>G là trọng tâm của ΔCDB

\(BE+AC=\dfrac{3}{2}BG+\dfrac{3}{2}CG=\dfrac{3}{2}\left(BG+CG\right)>\dfrac{3}{2}BC\)

b) Xét \(\Delta ACD\)\(\Delta ACB\) có ;

\(AD=AB;\widehat{CAD}=\widehat{CAB}=90^o;AC:chung\)

\(\Rightarrow\) \(\Delta ACD\) = \(\Delta ACB\left(cgc\right)\)

c) Xét \(\Delta DME\)\(\Delta CMB\) có :

\(\widehat{EDM}=\widehat{DCB}\left(slt\right);DM=CM;\widehat{DME}=\widehat{CMB}\) (đối đỉnh )

\(\Rightarrow\) \(\Delta DME\) = \(\Delta CMB\) ( gcg )

\(\Rightarrow DE=CB\)

mà BC = CD ( vì \(\Delta ACD\) = \(\Delta ACB\left(cgc\right)\) )

\(\Rightarrow\) DE = CD \(\Rightarrow\) \(\Delta DEC\) cân tại D

2. a) Xét \(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC=4cm\)

a: BC=căn 5^2+12^2=13cm

b: AB<AC<BC

=>góc C<góc B<góc A

c: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

d: góc EAC=góc ACB

góc ACB=góc ECA

=>góc EAC=góc ECA

=>ΔEAC cân tại E

1 tháng 5 2017

xét tam giác abc vuông tại a có

a) bc2=ac2+ab2=122+52=132

bc=13

b)xét tam giác abc vá tam giac adc có

ab=ad

góc bac= góc dac

ac là cạnh chung

=>tam giác abc =tam giác adc (c.g.c)

c)

1 tháng 5 2017

Cho tam giác ABC vuông tại A với AB = 3cm, BC= 5cm

a) tính độ dài đoạn thẳng AC 

b) trên tia đối của tia AB, lấy điểm D sao cho AB = AD. Chứng minh tam giác ABC = tam giác ADC, từ đó suy ra tam giác BCD cân 

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AB=AD

AC chung

Do đó: ΔABC=ΔADC

8 tháng 4 2022

Cảm ơn bạn nhé 

31 tháng 3 2021

a) Áp dụng định lý Py-ta-go cho \(\Delta\)vuông ABC có:

     \(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13\left(cm\right)\)

b) Xét \(\Delta ABC\)và \(\Delta ADC\)có:

\(\hept{\begin{cases}AB=AD\left(gt\right)\\gócBAC=gócDAC\left(=90^0\right)\\AC:chung\end{cases}}\)

\(\Rightarrow\Delta ABC=\Delta ADC\left(c.g.c\right)-\left(đpcm\right)\)

c) Xét \(\Delta BDC\)có: \(\hept{\begin{cases}\text{A là trung điểm BD}\\AE//BC\left(gt\right)\end{cases}}\)

\(\Rightarrow\text{E là trung điểm CD}\left(t/c\right)\)

Xét \(\Delta ADC\)vuông tại A có AE là đường trung tuyến ứng cạnh DC

\(\Rightarrow AE=\frac{1}{2}CD\left(t/c\right)=EC\left(\text{E là trung điểm CD}\right)\)

\(\Rightarrow\Delta AEC\)cân tại E (đpcm)

d) Gọi giao của AC và BE là O

Xét \(\Delta DBC\)có:\(\hept{\begin{cases}\text{BE là đường trung tuyến ứng cạnh CD }\left(gt\right)\\\text{CA là đường trung tuyến ứng cạnh BD }\left(gt\right)\end{cases}}\)

\(\Rightarrow\)O là trọng tâm của \(\Delta DBC\)

Mà DF là đường trung tuyến ứng cạnh BC

\(\Rightarrow\)CA, DF, BE cùng đồng quy tại 1 điểm (đpcm) 

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
29 tháng 4 2018

B F C D E A^2 G 12cm 5

a) Áp dụng định lý Py-ta-go, ta có:

\(BC^2=AB^2+AC^2\)

\(BC^2=5^2+12^2\)

\(\Rightarrow BC^2=169\left(cm\right)\)

\(\Rightarrow BC=\sqrt{169}=13\left(cm\right)\)

b) Vì \(\Delta ABC=\Delta ADC\)

\(\Rightarrow\widehat{C_1}=\widehat{C_2}\left(2\text{ góc tương ứng}\right)\)

Vì BC // AE (gt)

\(\Rightarrow\widehat{CED}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta EAC\text{ là tam giác cân. }\)

=> ĐPCM

d) Ta có: BF = CF (F là trung điểm của BC)

               AB = AD (gt)

=> DP và AB là 2 đường trung tuyến của tam giác BDC

=> G là trọng điểm của tam giác BDC

=> BG là đường trung tuyến còn lại của tam giác BDC 

<=> CA; DF; BE cùng đi qua 1 điểm hoặc CA; DF; BE đồng quy tại 1 điểm 

=> ĐPCM

P/s: Mk vẽ hình hơi xấu, mong bn thông cảm

10 tháng 5 2021

Vẽ luôn hình hộ mik vs

10 tháng 5 2021

Á dụng định lý yTaGo vào tam giác vuông ABC ta có

BC2=AC2+AB2

BC2=122+52

BC2=169

Ý b

Xét tam giác ABC và tam giác ADC

góc CAB= góc CAD

AC chung

AB=AD

Vậy tam giác ABC= tam giác ADC(c.g.c)

ý c

Vì tam giác ABC= tam giác ADC(cmt)

suy ra góc ACD= góc ACB

mà AE song song với BC

suy ra góc EAC= góc ACB(hai góc sole trong)

mà góc ACD= góc ACB

vậy tam giác RAC cân tại E

ý d 

gọi gia điểm của DF,CA,BE là I

Có FB=FC(F là trung điểm của BC)

AB=AD (gt)

suy ra DF và AC là hai đường trung tuyến của tam giác BDC

mà hai đường này cắt nhau tại I

suy ra I là trọng tâm của tam giác BDC

suy ra BE là đường trung tuyến còn lại

Vậy DF,CA,BE đồng quy tại 1 điểm