Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P
a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)
b) Hoàn toàn tương tự như câu a, ta có:
\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)
\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)
\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)
c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)
\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)
\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)
O cách đều 3 cạnh nên O là giao của 3 đường phân giác của Δ ABC
Xét Δ ABO và Δ MBO có: Cạnh BO chung, B1=B2,AB=BM⇒ Δ ABO = Δ MBO (c.g.c) ⇒ OA = OM (1)
Tương tự có Δ ACO = Δ NCO (c.g.c) ⇒ AO = ON (2).
Từ (1) và (2) ⇒ ON = OM hay Δ MON cân tại O.
Mà OD⊥ BC ⇒ OD vừa là đường cao vừa là đường phân giác ⇒ NOD=MOD.
Ta có: FOM^ =FOD+ MOD =1800−ABC+MOD
EON=3600−NOD−EOD= 3600−NOD^−(1800−ACB) = 1800+ACB−NOD
Ta chứng minh FOM=EON.
Thật vậy FOM=EON
⇔1800−ABC+MOD = 1800+ACB−NOD
⇔1800−(ABC+ACB)=1800−(NOD+MOD)
⇔BAC=ONM+OMN.
⇔A1+A2=ONM+OMN
Luôn đúng vì {A1=OMN(ΔABO=ΔMBO);A2=ONM(ΔAOC=ΔNOC)
Vậy ΔFOM=ΔEON (c.g.c)
⇒ FM = EN
Chúc các em học tốt, thân!