\(\Delta\) ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0
26 tháng 2 2018

A B C M N P

a) Ta có \(\frac{S_{AMP}}{S_{ABC}}=\frac{S_{AMP}}{S_{ABP}}.\frac{S_{ABP}}{S_{ABC}}=\frac{AM}{AB}.\frac{AP}{AC}=\frac{k}{k+1}.\frac{1}{k+1}=\frac{k}{\left(k+1\right)^2}\)

b) Hoàn toàn tương tự như câu a, ta có:

\(\frac{S_{MNB}}{S_{ABC}}=\frac{S_{NCP}}{S_{ABC}}=\frac{k}{\left(k+1\right)^2}\)

\(\Rightarrow S_{MNP}=S_{ABC}-S_{MAP}-S_{MBN}-S_{PNC}\)

\(=S-\frac{3k}{\left(k+1\right)^2}.S=\frac{k^2-k+1}{\left(k+1\right)^2}.S\)

c) Để \(S'=\frac{7}{16}S\Rightarrow\frac{k^2-k+1}{\left(k+1\right)^2}=\frac{7}{16}\)

\(\Rightarrow16k^2-16k+16=7k^2+14k+7\)

\(\Rightarrow9k^2-30k+9=0\Rightarrow\orbr{\begin{cases}k=3\\k=\frac{1}{3}\end{cases}}\)

8 tháng 9 2016

O cách đều 3 cạnh nên O là giao của 3 đường phân giác của Δ ABC

Xét Δ ABO và Δ MBO có: Cạnh BO chung, B1=B2,AB=BM⇒ Δ ABO = Δ MBO (c.g.c) ⇒ OA = OM (1)

Tương tự  có Δ ACO = Δ NCO (c.g.c) ⇒ AO = ON (2).

Từ (1) và (2) ⇒ ON = OM hay Δ MON cân tại O.

Mà OD⊥ BC ⇒ OD vừa là đường cao vừa là đường phân giác ⇒ NOD=MOD.

Ta có: FOM^ =FOD+ MOD =1800−ABC+MOD

EON=3600−NOD−EOD= 3600−NOD^−(1800−ACB) = 1800+ACB−NOD

Ta chứng minh FOM=EON.

Thật vậy FOM=EON

 ⇔1800−ABC+MOD = 1800+ACB−NOD

⇔1800−(ABC+ACB)=1800−(NOD+MOD)

⇔BAC=ONM+OMN.

⇔A1+A2=ONM+OMN

Luôn đúng vì {A1=OMN(ΔABO=ΔMBO);A2=ONM(ΔAOC=ΔNOC)

Vậy ΔFOM=ΔEON (c.g.c)

⇒ FM = EN

 

Chúc các em học tốt, thân!

15 tháng 8 2017

Mk chỉ bt vẽ hình vậy thui