\(\Delta ABC\) , trên BC lấy điểm M sao cho \(\dfrac{MC}{MB}=\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019
https://i.imgur.com/B2sLEB4.png
AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

$AB,BC,AC$ tỉ lệ với $4,7,5$ \(\Leftrightarrow \frac{AB}{4}=\frac{BC}{7}=\frac{CA}{5}(*)\)

a) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:

\(\frac{MC}{BM}=\frac{AC}{AB}=\frac{5}{4}\)

\(\Rightarrow \frac{MC}{BM+MC}=\frac{5}{4+5}\Leftrightarrow \frac{MC}{BC}=\frac{5}{9}\)

\(\Rightarrow MC=\frac{5}{9}BC=\frac{5}{9}.18=10\) (cm)

b) Sử dụng công thức đường phân giác kết hợp với \((*)\) ta có:

\(\frac{NC}{NA}=\frac{BC}{AB}=\frac{7}{4}\)\(\Leftrightarrow \frac{NC}{7}=\frac{NA}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{NC+NA}{7+4}=\frac{NC}{7}=\frac{NA}{4}=\frac{NC-NA}{7-4}\)

\(\Leftrightarrow \frac{AC}{11}=\frac{3}{3}=1\Rightarrow AC=11\) (cm)

c)

Vì $AO$ là phân giác góc $PAC$, $BO$ là phân giác góc $PBC$ nên áp dụng công thức đường phân giác:

\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}\)

AD tính chất dãy tỉ số bằng nhau:

\(\frac{OP}{OC}=\frac{AP}{AC}=\frac{BP}{BC}=\frac{AP+BP}{AC+BC}=\frac{AB}{AC+BC}\)

Theo \((*)\Rightarrow AC=\frac{5}{4}AB; BC=\frac{7}{4}AB\)

\(\frac{OP}{OC}=\frac{AB}{AC+BC}=\frac{AB}{\frac{5}{4}AB+\frac{7}{4}AB}=\frac{AB}{3AB}=\frac{1}{3}\)

d) Áp dụng công thức đường phân giác:

\(\left\{\begin{matrix} \frac{MB}{MC}=\frac{AB}{AC}\\ \frac{NC}{NA}=\frac{BC}{AB}\\ \frac{PA}{PB}=\frac{AC}{BC}\end{matrix}\right.\Rightarrow \frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=\frac{AB}{AC}.\frac{BC}{AB}.\frac{AC}{BC}=1\)

(đpcm)

Chứng minh \(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}>\frac{1}{AB}+\frac{1}{BC}+\frac{1}{AC}\)

Kẻ \(MH\perp AB, MK\perp AC, CL\perp AB\)

Ta có bổ đề sau: \(\sin (2\alpha)=2\sin \alpha\cos \alpha\)

Chứng minh :

Thật vậy, xét một tam giác $ABC$ vuông tại $A$ có đường cao $AH$ và trung tuyến $AM$, góc \(\angle ACB=\alpha\)

Khi đó: \(AM=MB=MC=\frac{BC}{2}\Rightarrow \triangle AMC\) cân tại $M$
\(\Rightarrow \angle MAC=\angle MCA=\alpha\)

\(\Rightarrow \angle HMA=\angle MAC+\angle MCA=2\alpha\)

\(\Rightarrow \sin 2\alpha=\sin HMA=\frac{HA}{MA}=\frac{HA}{\frac{BC}{2}}=\frac{2HA}{BC}\) (1)

Lại có: \(\sin \alpha=\sin \angle ACB=\frac{AH}{AC}\)

\(\cos \alpha=\frac{AC}{BC}\)

\(\Rightarrow \sin \alpha\cos \alpha=\frac{AH}{AC}.\frac{AC}{BC}=\frac{AH}{BC}\) (2)

Từ (1); (2) suy ra \(\sin 2\alpha=2\sin \alpha\cos \alpha\) (đpcm)

------------------------------

Áp dụng vào bài toán:

Ta có: \(\sin A=2\sin \frac{A}{2}\cos \frac{A}{2}\)

\(S_{ABM}+S_{AMC}=S_{ABC}\)

\(\Leftrightarrow \frac{MH.AB}{2}+\frac{MK.AC}{2}=\frac{CL.AB}{2}\)

\(\Leftrightarrow AB.\sin \frac{A}{2}.AM+\sin \frac{A}{2}.AM.AC=\sin A.AC.AB\)

\(\Leftrightarrow AM=\frac{\sin A.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}=\frac{2\sin \frac{A}{2}\cos \frac{A}{2}.AB.AC}{\sin \frac{A}{2}.AB+\sin \frac{A}{2}.AC}\)

\(\Leftrightarrow AM=\frac{2\cos \frac{A}{2}.AB.AC}{AB+AC}\)

\(\Leftrightarrow \frac{1}{AM}=\frac{AB+AC}{2AB.AC\cos \frac{A}{2}}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})\)

Tương tự: \(\frac{1}{BN}=\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})\)

\(\frac{1}{CP}=\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CB}+\frac{1}{CA})\)

Cộng theo vế:

\(\frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}=\frac{1}{2\cos \frac{A}{2}}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2\cos \frac{B}{2}}(\frac{1}{BA}+\frac{1}{BC})+\frac{1}{2\cos \frac{C}{2}}(\frac{1}{CA}+\frac{1}{CB})\)

\(> \frac{1}{2}(\frac{1}{AB}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{BC}+\frac{1}{AC})+\frac{1}{2}(\frac{1}{CB}+\frac{1}{CA})\) (do \(\cos \alpha < 1\) vì cạnh góc vuông luôn nhỏ hơn cạnh huyền)

\(\Leftrightarrow \frac{1}{AM}+\frac{1}{BN}+\frac{1}{CP}> \frac{1}{AB}+\frac{1}{BC}+\frac{1}{CA}\)

Ta có đpcm.

 

 

 

 

26 tháng 1 2018

Lớp 8 chưa học tỉ số lượng giác đâu cô

19 tháng 7 2018

Áp dụng định lí Menelaus :

\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1

Mà AE = CE, AD = 1/3BD

=> BF/CF = 3

=> CF = 1/2 BC

Bài 1: 

Gọi G là trung điểm của BK

Xét ΔBKC có 

M là trung điểm của BC

G là trung điểm của BK

Do đó; MG là đường trung bình

=>MG//KC

hay KI//GM

Xét ΔAGM có 

I là trung điểm của AM

IK//GM

Do đó; K là trung điểm của AG

=>AK=KG=GB

=>AK=1/3AB

21 tháng 4 2018

a) Xét \(\Delta ABC\)\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\) MN//BC (định lí Ta-lét đảo)

b) Xét \(\Delta AIB\) có MK // BI ( vì MN // BC)

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MK}{BI}\) ( hệ quả của định lí Ta-lét)

C/m tương tự, ta có: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{MK}{BI}=\dfrac{KN}{IC}\)

\(BI=IC\Rightarrow MK=KN\)

\(\Rightarrow\) K là trung điểm của MN

\(\)

23 tháng 4 2018

Cảm ơn bạn nhiều

a: Gọi K là trung điểm của NC

=>AN=NK=KC

Xét ΔBNC có

M,K lần lượt là trung điểm của CB và CN

nên MK là đường trung bình

=>MK//BN và MK=1/2BN

Xét ΔAMK có

N là trung điểm của AK

NI//MK

Do đó: I là trung điểm của AM

b: Xét ΔAMK có IN//MK

nên IN/MK=AN/AK=1/2

=>IN=1/2MK=1/2x1/2BN=1/4BN

=>IN=1/3BI

c: Gọi D là trung điểm của BE

=>AE=ED=BD

Xét ΔBEC có 

M,D lần lượt là trung điểm của BC,BE

nên MD là đường trung bình

=>MD//EC

Xét ΔADM cso

I,E lần lượt là trung điểm của AM và AD

nen IE là đường trung bình

=>IE//MD

=>IE//EC

=>C,I,E thẳng hàng

31 tháng 8 2022

a: Gọi K là trung điểm của NC

=>AN=NK=KC

Xét ΔBNC có

M,K lần lượt là trung điểm của CB và CN

nên MK là đường trung bình

=>MK//BN và MK=1/2BN

Xét ΔAMK có

N là trung điểm của AK

NI//MK

Do đó: I là trung điểm của AM

b: Xét ΔAMK có IN//MK

nên IN/MK=AN/AK=1/2

=>IN=1/2MK=1/2x1/2BN=1/4BN

=>IN=1/3BI

c: Gọi D là trung điểm của BE

=>AE=ED=BD

Xét ΔBEC có 

M,D lần lượt là trung điểm của BC,BE

nên MD là đường trung bình

=>MD//EC

Xét ΔADM cso

I,E lần lượt là trung điểm của AM và AD

nen IE là đường trung bình

=>IE//MD

=>IE//EC

=>C,I,E thẳng hàng